Импульс определение и формула. Импульс тела

Импульсом (количеством движения) тела называют физическую векторную величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается р . Импульс тела равен произведению массы тела на его скорость, т.е. он рассчитывается по формуле:

Направление вектора импульса совпадает с направлением вектора скорости тела (направлен по касательной к траектории). Единица измерения импульса – кг∙м/с.

Общий импульс системы тел равен векторной сумме импульсов всех тел системы:

Изменение импульса одного тела находится по формуле (обратите внимание, что разность конечного и начального импульсов векторная):

где: p н – импульс тела в начальный момент времени, p к – в конечный. Главное не путать два последних понятия.

Абсолютно упругий удар – абстрактная модель соударения, при которой не учитываются потери энергии на трение, деформацию, и т.п. Никакие другие взаимодействия, кроме непосредственного контакта, не учитываются. При абсолютно упругом ударе о закрепленную поверхность скорость объекта после удара по модулю равна скорости объекта до удара, то есть величина импульса не меняется. Может поменяться только его направление. При этом угол падения равен углу отражения.

Абсолютно неупругий удар – удар, в результате которого тела соединяются и продолжают дальнейшее своё движение как единое тело. Например, пластилиновый шарик при падении на любую поверхность полностью прекращает свое движение, при столкновении двух вагонов срабатывает автосцепка и они так же продолжают двигаться дальше вместе.

Закон сохранения импульса

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой .

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой. Этот фундаментальный закон природы называется законом сохранения импульса (ЗСИ) . Следствием его являются законы Ньютона. Второй закон Ньютона в импульсной форме может быть записан следующим образом:

Как следует из данной формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Аналогично можно рассуждать для равенства нулю проекции силы на выбранную ось. Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

Аналогичные записи можно составить и для остальных координатных осей. Так или иначе, нужно понимать, что при этом сами импульсы могут меняться, но именно их сумма остается постоянной. Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны.

Сохранение проекции импульса

Возможны ситуации, когда закон сохранения импульса выполняется только частично, то есть только при проектировании на одну ось. Если на тело действует сила, то его импульс не сохраняется. Но всегда можно выбрать ось так, чтобы проекция силы на эту ось равнялась нулю. Тогда проекция импульса на эту ось будет сохраняться. Как правило, эта ось выбирается вдоль поверхности по которой движется тело.

Многомерный случай ЗСИ. Векторный метод

В случаях если тела движутся не вдоль одной прямой, то в общем случае, для того чтобы применить закон сохранения импульса, нужно расписать его по всем координатным осям, участвующим в задаче. Но решение подобной задачи можно сильно упростить, если использовать векторный метод. Он применяется если одно из тел покоится до или после удара. Тогда закон сохранения импульса записывается одним из следующих способов:

Из правил сложения векторов следует, что три вектора в этих формулах должны образовывать треугольник. Для треугольников применяется теорема косинусов.

Если на тело массой m за определенный промежуток времени Δ t действует сила F → , тогда следует изменение скорости тела ∆ v → = v 2 → - v 1 → . Получаем, что за время Δ t тело продолжает движение с ускорением:

a → = ∆ v → ∆ t = v 2 → - v 1 → ∆ t .

Основываясь на основном законе динамики, то есть втором законе Ньютона, имеем:

F → = m a → = m v 2 → - v 1 → ∆ t или F → ∆ t = m v 2 → - m v 1 → = m ∆ v → = ∆ m v → .

Определение 1

Импульс тела , или количество движения – это физическая величина, равная произведению массы тела на скорость его движения.

Импульс тела считается векторной величиной, которая измеряется в килограмм-метр в секунду (к г м / с) .

Определение 2

Импульс силы – это физическая величина, равняющаяся произведению силы на время ее действия.

Импульс относят к векторным величинам. Существует еще одна формулировка определения.

Определение 3

Изменение импульса тела равняется импульсу силы.

При обозначении импульса p → второй закон Ньютона записывается как:

F → ∆ t = ∆ p → .

Данный вид позволяет формулировать второй закон Ньютона. Сила F → является равнодействующей всех сил, действующих на тело. Равенство записывается как проекции на координатные оси вида:

F x Δ t = Δ p x ; F y Δ t = Δ p y ; F z Δ t = Δ p z .

Рисунок 1 . 16 . 1 . Модель импульса тела.

Изменение проекции импульса тела на любую из трех взаимно перпендикулярных осей равно проекции импульса силы на эту же ось.

Определение 4

Одномерное движение – это движение тела по одной из координатный осей.

Пример 1

На примере рассмотрим свободное падение тела с начальной скоростью v 0 под действием силы тяжести за промежуток времени t . При направлении оси O Y вертикально вниз импульс силы тяжести F т = mg , действующий за время t , равняется m g t . Такой импульс равняется изменению импульса тела:

F т t = m g t = Δ p = m (v – v 0) , откуда v = v 0 + g t .

Запись совпадает с кинематической формулой определения скорости равноускоренного движения. По модулю сила не изменяется из всего интервала t . Когда она изменяема по величине, тогда формула импульса требует подстановки среднего значения силы F с р из временного промежутка t . Рисунок 1 . 16 . 2 показывает, каким образом определяется импульс силы, которая зависит от времени.

Рисунок 1 . 16 . 2 . Вычисление импульса силы по графику зависимости F (t)

Необходимо выбрать на временной оси интервал Δ t , видно, что сила F (t) практически неизменна. Импульс силы F (t) Δ t за промежуток времени Δ t будет равняться площади заштрихованной фигуры. При разделении временной оси на интервалы на Δ t i на промежутке от от 0 до t , сложить импульсы всех действующих сил из этих промежутков Δ t i , тогда суммарный импульс силы будет равняться площади образования при помощи ступенчатой и временной осей.

Применив предел (Δ t i → 0) , можно найти площадь, которая будет ограничиваться графиком F (t) и осью t . Использование определения импульса силы по графику применимо с любыми законами, где имеются изменяющиеся силы и время. Данное решение ведет к интегрированию функции F (t) из интервала [ 0 ; t ] .

Рисунок 1 . 16 . 2 показывает импульс силы, находящийся на интервале от t 1 = 0 с до t 2 = 10 .

Из формулы получим, что F с р (t 2 - t 1) = 1 2 F m a x (t 2 - t 1) = 100 Н · с = 100 к г · м / с.

То есть, из примера видно F с р = 1 2 F m a x = 10 Н.

Имеются случаи, когда определение средней силы F с р возможно при известных времени и данных о сообщенном импульсе. При сильной ударе по мячу с массой 0 , 415 к г можно сообщить скорость, равную v = 30 м / с. Приблизительным временем удара является значение 8 · 10 – 3 с.

Тогда формула импульса приобретает вид:

p = m v = 12 , 5 к г · м / с.

Чтобы определить среднюю силу F с р во время удара, необходимо F с р = p ∆ t = 1 , 56 · 10 3 Н.

Получили очень большое значение, которое равняется телу массой 160 к г.

Когда движение происходит по криволинейной траектории, то начальное значение p 1 → и конечное
p 2 → могут быть различны по модулю и по направлению. Для определения импульса ∆ p → применяют диаграмму импульсов, где имеются векторы p 1 → и p 2 → , а ∆ p → = p 2 → - p 1 → построен по правилу параллелограмма.

Пример 2

Для примера приводится рисунок 1 . 16 . 2 , где нарисована схема импульсов мяча, отскакивающего от стены. При подаче мяч с массой m со скоростью v 1 → налетает на поверхность под углом α к нормали и отскакивает со скоростью v 2 → с углом β . При ударе в стену мяч подвергался действию силы F → , направленной также, как и вектор ∆ p → .

Рисунок 1 . 16 . 3 . Отскакивание мяча от шероховатой стенки и диаграмма импульсов.

Если происходит нормальное падение мяча с массой m на упругую поверхность со скоростью v 1 → = v → , тогда при отскоке она изменится на v 2 → = - v → . Значит, за определенный промежуток времени импульс изменится и будет равен ∆ p → = - 2 m v → . Используя проекции на О Х, результат запишется как Δ p x = – 2 m v x . Из рисунка 1 . 16 . 3 видно, что ось О Х направлена от стенки, тогда следует v x < 0 и Δ p x > 0 . Из формулы получим, что модуль Δ p связан с модулем скорости, который принимает вид Δ p = 2 m v .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Пуля 22-го калибра имеет массу всего 2 г. Если кому-нибудь бросить такую пулю, то он легко сможет поймать ее даже без перчаток. Если же попытаться поймать такую пулю, вылетевшую из дула со скоростью 300 м/с, то даже перчатки тут не помогут.

Если на тебя катится игрушечная тележка, ты сможешь остановить ее носком ноги. Если на тебя катится грузовик, следует уносить ноги с его пути.


Рассмотрим задачу, которая демонстрирует связь импульса силы и изменения импульса тела.

Пример. Масса мяча равна 400 г, скорость, которую приобрел мяч после удара - 30 м/с. Сила, с которой нога действовала на мяч - 1500 Н, а время удара 8 мс. Найти импульс силы и изменение импульса тела для мяча.


Изменение импульса тела

Пример. Оценить среднюю силу со стороны пола, действующую на мяч во время удара.

1) Во время удара на мяч действуют две силы: сила реакции опоры , сила тяжести .

Сила реакции изменяется в течение времени удара, поэтому возможно найти среднюю силу реакции пола.

2) Изменение импульса тела изображено на рисунке

3) Из второго закона Ньютона

Главное запомнить

1) Формулы импульса тела, импульса силы;
2) Направление вектора импульса;
3) Находить изменение импульса тела

Вывод второго закона Ньютона в общем виде

График F(t). Переменная сила

Импульс силы численно равен площади фигуры под графиком F(t).


Если же сила непостоянная во времени, например линейно увеличивается F=kt , то импульс этой силы равен площади треугольника. Можно заменить эту силу такой постоянной силой, которая изменит импульс тела на ту же величину за тот же промежуток времени

Средняя равнодействующая сила

ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА

Тестирование онлайн

Замкнутая система тел

Это система тел, которые взаимодействуют только друг с другом. Нет внешних сил взаимодействия.

В реальном мире такой системы не может быть, нет возможности убрать всякое внешнее взаимодействие. Замкнутая система тел - это физическая модель, как и материальная точка является моделью. Это модель системы тел, которые якобы взаимодействуют только друг с другом, внешние силы не берутся во внимание, ими пренебрегают.

Закон сохранения импульса

В замкнутой системе тел векторная сумма импульсов тел не изменяется при взаимодействии тел. Если импульс одного тела увеличился, то это означает, что у какого-то другого тела (или нескольких тел) в этот момент импульс уменьшился ровно на такую же величину.

Рассмотрим такой пример. Девочка и мальчик катаются на коньках. Замкнутая система тел - девочка и мальчик (трением и другими внешними силами пренебрегаем). Девочка стоит на месте, ее импульс равен нулю, так как скорость нулевая (см. формулу импульса тела). После того как мальчик, движущийся с некоторой скоростью, столкнется с девочкой, она тоже начнет двигаться. Теперь ее тело обладает импульсом. Численное значение импульса девочки ровно такое же, на сколько уменьшился после столкновения импульс мальчика.

Одно тело массой 20кг движется со скоростью , второе тело массой 4кг движется в том же направлении со скоростью . Чему равны импульсы каждого тела. Чему равен импульс системы?


Импульс системы тел - это векторная сумма импульсов всех тел, входящих в систему. В нашем примере, это сумма двух векторов (так как рассматриваются два тела), которые направлены в одну сторону, поэтому

Сейчас вычислим импульс системы тел из предыдущего примера, если второе тело двигается в обратном направлении.


Так как тела двигаются в противоположных направлениях, получаем векторную сумму импульсов разнонаправленных. Подробнее о сумме векторов .

Главное запомнить

1) Что такое замкнутая система тел;
2) Закон сохранения импульса и его применение

Импульс тела это векторная физическая величина, которая равна произведению скорости тела на его массу. Также импульс тела имеет и второе название это количество движения. Направление импульса тела совпадает с направлением вектора скорости. Импульс тела в системе си не имеет собственной единицы измерения. Поэтому он измеряется в единицах входящих в его состав это килограммометр в секунду кгм/с.

Формула 1 - Импульс тела.


m - масса тела.

v - скорость тела.

Импульс тела, по сути, является новой трактовкой второго закона Ньютона. В котором попросту разложили ускорение. При этом величину Ft назвали импульсом силы, а mv импульсом тела.

Импульс силы это физическая величина векторного характера, которая определяет степень действия силы за промежуток времени в течение, которого она действует.

Формула 2 - Второй закон Ньютон, импульс тела.


m - масса тела.

v1 - начальная скорость тела.

v2 - конечная скорость тела.

a - ускорение тела.

p - импульс тела.

t1 - начальное время

t2 - конечное время.

Сделано это для того чтобы можно было просчитывать задачи связанные с движением тел переменной массы и при скоростях сравнимых со скоростью света.

Новую трактовку второго закона Ньютона нужно понимать так. В результате действия силы F в течение времени t на тело массой m его скорость станет равной V.

В замкнутой системе величина импульса является постоянной, так звучит закон сохранения импульса. Напомним, что замкнутой называется система, на которую не действуют внешние силы. Примером такой системы могут служить два разнородных шарика движущихся по прямолинейной траектории навстречу друг другу, с одинаковой скоростью. Шарики имеют одинаковый диаметр. Силы трения во время движения отсутствуют. Так как шарики выполнены из разных материалов, то они обладают разной массой. Но при этом материал обеспечивает абсолютную упругость тел.

В результате столкновения шаров более легкий отскочит с большей скоростью. А более тяжелый покатится назад медленнее. Так как импульс тела, сообщенный более тяжёлым шаром более легкому больше чем импульс отдаваемым легким шаром тяжелому.

Рисунок 1 - Закон сохранения импульса.


Благодаря закону сохранения импульса можно описать реактивное движение. В отличие от других видов движения, для реактивного не нужно взаимодействие с другими телами. К примеру, автомобиль движется благодаря силе трения, которая способствует его отталкиванию от поверхности земли. При реактивном же движении взаимодействие с другими телами не происходит. Его причиной является отделение от тела части его массы с определенной скоростью. То есть от двигателя отделяется часть топлива, в виде расширяющихся газов, при этом они движутся с огромной скоростью. Соответственно сам двигатель при этом приобретает некоторый импульс, сообщающий ему скорость.

Изучив законы Ньютона, мы видим, что с их помощью можно решить основные задачи механики, если нам известны все силы, действующие на тело. Есть ситуации, в которых определить эти величины затруднительно или вообще невозможно. Рассмотрим несколько таких ситуаций. При столкновении двух биллиардных шаров или автомобилей мы можем утверждать о действующих силах, что это их природа, здесь действуют силы упругости. Однако ни их модулей, ни их направлений мы точно установить не сможем, тем более что эти силы имеют крайне малое время действия. При движении ракет и реактивных самолетов мы также мало что можем сказать о силах, приводящих указанные тела в движение. В таких случаях применяются методы, позволяющие уйти от решения уравнений движения, а сразу воспользоваться следствиями этих уравнений. При этом вводятся новые физические величины. Рассмотрим одну из этих величин, называемую импульсом тела

Стрела, выпускаемая из лука. Чем дольше продолжается контакт тетивы со стрелой (∆t), тем больше изменение импульса стрелы (∆), а следовательно, тем выше ее конечная скорость.

Два сталкивающихся шарика. Пока шарики находятся в контакте, они действуют друг на друга с равными по модулю силами, как учит нас третий закон Ньютона. Значит, изменения их импульсов также должны быть равны по модулю, даже если массы шариков не равны.

Проанализировав формулы, можно сделать два важных вывода:

1. Одинаковые силы, действующие в течение одинакового промежутка времени, вызывают одинаковые изменения импульса у различных тел, независимо от массы последних.

2. Одного и того же изменения импульса тела можно добиться, либо действуя небольшой силой в течение длительного промежутка времени, либо действуя кратковременно большой силой на то же самое тело.

Согласно второму закону Ньютона, можем записать:

∆t = ∆ = ∆ / ∆t

Отношение изменения импульса тела к промежутку времени, в течение которого это изменение произошло, равно сумме сил, действующих на тело.

Проанализировав это уравнение, мы видим, что второй закон Ньютона позволяет расширить класс решаемых задач и включить задачи, в которых масса тел изменяется с течением времени.

Если же попытаться решить задачи с переменной массой тел при помощи обычной формулировки второго закона Ньютона:

то попытка такого решения привела бы к ошибке.

Примером тому могут служить уже упоминаемые реактивный самолет или космическая ракета, которые при движении сжигают топливо, и продукты этого сжигаемого выбрасывают в окружающее пространство. Естественно, масса самолета или ракеты уменьшается по мере расхода топлива.

Несмотря на то что второй закон Ньютона в виде «равнодействующая сила равна произведению массы тела на его ускорение» позволяет решить довольно широкий класс задач, существуют случаи движения тел, которые не могут быть полностью описаны этим уравнением. В таких случаях необходимо применять другую формулировку второго закона, связывающую изменение импульса тела с импульсом равнодействующей силы. Кроме того, существует ряд задач, в которых решение уравнений движения является математически крайне затруднительным либо вообще невозможным. В таких случаях нам полезно использовать понятие импульса.

С помощью закона сохранения импульса и взаимосвязи импульса силы и импульса тела мы можем вывести второй и третий закон Ньютона.

Второй закон Ньютона выводится из соотношения импульса силы и импульса тела.

Импульс силы равен изменению импульса тела:

Произведя соответствующие переносы, мы получим зависимость силы от ускорения, ведь ускорение определяется как отношение изменения скорости ко времени, в течение которого это изменение произошло:

Подставив значения в нашу формулу, получим формулу второго закона Ньютона:

Для выведения третьего закона Ньютона нам понадобится закон сохранения импульса.

Векторы подчеркивают векторность скорости, то есть то, что скорость может изменяться по направлению. После преобразований получим:

Так как промежуток времени в замкнутой системе был величиной постоянной для обоих тел, мы можем записать:

Мы получили третий закон Ньютона: два тела взаимодействуют друг с другом с силами, равными по величине и противоположными по направлению. Векторы этих сил направлены навстречу друг к другу, соответственно, модули этих сил равны по своему значению.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.

Домашнее задание

  1. Дать определение импульсу тела, импульсу силы.
  2. Как связаны импульс тела с импульсом силы?
  3. Какие выводы можно сделать по формулам импульса тела и импульса силы?
  1. Интернет-портал Questions-physics.ru ().
  2. Интернет-портал Frutmrut.ru ().
  3. Интернет-портал Fizmat.by ().