Иридий, радиоактивный. Металл иридий: история, свойства, как получают и где используют

Иридий

ИРИ́ДИЙ -я; м. [от греч. iris (iridos) - радуга] Химический элемент (Ir), тяжёлый тугоплавкий редкоземельный металл серовато-белого цвета (используется для нанесения защитных покрытий). Добыча иридия.

Ири́диевый, -ая, -ое. И. сплав. И. кончик пера.

ири́дий

(лат. Iridium), химический элемент VIII группы периодической системы, относится к платиновым металлам. Плотность 22,65 г/ см 3 , t пл 2447°C. Применяют для нанесения защитных покрытий. Компонент сплавов с Pt, Os и др. (химическая аппаратура, эталоны мер, детали измерительных приборов, напайка «вечных перьев»). Название от греческого íris - радуга.

ИРИДИЙ

ИРИ́ДИЙ (лат. Iridium, от греческого «ирис» - радуга), Ir (читается «иридий»), химический элемент с атомным номером 77, атомная масса 192,22. Состоит из смеси двух стабильных изотопов 193 Ir (62,7% по массе) и 191 Ir (37,3%). Расположен в VIIIB группе, в 6 периоде периодической системы элементов. Входит в триаду осмий (см. ОСМИЙ) -иридий-платина, (см. ПЛАТИНА) является платиновым металлом. Конфигурация внешней и предвнешней электронных оболочек 5s 2 p 6 d 7 6s 2 . Степени окисления от +1 до +6 (валентности I-VI). Наиболее характерны степени окисления +3 и +4.
Радиус атома 0,135 нм, ионный радиус иона Ir 2+ - 0,089 нм, иона Ir 3+ - 0,082 нм, Ir 4+ - 0,077 нм, Ir 5+ - 0,071 нм. Энергии последовательной ионизации 9,1 и 17,0 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 2,2.
Иридий - тяжелый серебристо-белый металл.
История открытия
Открыт в 1804 английским химиком С. Теннантом (см. ТЕННАНТ Смитсон) , который изучал состав платиновых минералов.
Нахождение в природе
Иридий - очень редкий элемент, содержание в земной коре 1·10 –7 % по массе. В природе встречается в виде сплавов с осмием (осмистый иридий), платиной, родием (см. РОДИЙ) , рутением (см. РУТЕНИЙ) и другими платиновыми металлами (см. ПЛАТИНОВЫЕ МЕТАЛЛЫ) . В рассеянной форме (10 –4 % по массе) содержится в сульфидных медно-никелевых железосодержащих рудах.
Получение
Основной источник иридия - анодные шламы медно-никелевого производства. Полученный шлам обогащают. Потом, действуя на него царской водкой (см. ЦАРСКАЯ ВОДКА) , при нагревании переводят в раствор платину, палладий (см. ПАЛЛАДИЙ (химический элемент)) , родий, иридий и рутений в виде хлоридных комплексов H 2 , H 2 , H 3 , H 2 и H 2 . Осмий остается в нерастворимом осадке. Из полученного раствора добавлением хлорида аммония NH 4 Cl сначала осаждают комплекс платины (NH 4) 2 , а затем комплекс иридия (NH 4) 2 и рутения (NH 4) 2 . При прокаливании (NH 4) 2 на воздухе получают металлический иридий:
(NH 4) 2 = Ir + N 2 + 6HCl + H 2 .
Физические и химические свойства
Иридий - тяжелый серебристо-белый металл (плотность при 20 °C 22,65 кг/дм 3). Решетка кубическая гранецентрированная, а = 0,38387 нм. Температура плавления 2447 °C, кипения 4380 °C. В ряду стандартных потенциалов расположен правее водорода (см. ВОДОРОД) . На воздухе иридий устойчив, с кислотами-неокислителями и водой не реагирует.
Отличается высокой химической стойкостью. С неметаллами взаимодействует только в мелкораздробленном состоянии при температуре красного каления. Взаимодействие с кислородом (см. КИСЛОРОД) происходит только при температуре выше 1000 °C, при этом образуется диоксид иридия IrO 2 .
Оксиды иридия не растворяются в воде, кислотах и щелочах.
Компактный иридий при температурах до 100 °C не реагирует со всеми известными кислотами и их смесями, в том числе и с царской водкой. Для перевода этих металлов в растворимые в воде хлорокомплексы порошок, содержащий эти металлы, хлорируют при нагревании в присутствии комплексообразователя NaCl:
Ir + 2Cl 2 + 2NaCl = Na 2
Гидроксид Ir(OH) 4 (IrO 2 ·2H 2 O) образуется при нейтрализации растворов хлороиридатов(IV) в присутствии окислителей. Осадок Ir 2 O 3 ·x H 2 O выпадает при нейтрализации щелочью хлороиридатов (III) и легко окисляется на воздухе до IrO 2 . Гидроксиды иридия практически не растворяются в воде. В растворимую форму оксиды иридия переводят, окисляя их в присутствии комплексообразователя:
IrO 2 + 4HCl + 2NaCl = Na 2 + 2H 2 O.
Высшая степень окисления +6 проявляется у иридия в гексафториде IrF 6 . Это очень сильный окислитель, способный окислить даже воду:
2IrF 6 + 10H 2 O = 2Ir(OH) 4 + 12HF + O 2 ,
или NO:
NO + IrF 6 = NO + – .
Как и для других d -элементов, для иридия характерно образование комплексных соединений с координационным числом 6. Известно большое число иридийорганических соединений со связью Ir-C.
Применение
Из чистого иридия изготавливают тигли для выращивания монокристаллов, фольгу для неамальгамирующихся катодов, ответственные детали контрольно-измерительных приборов. Иридий используется для иридирования поверхностей изделий. Радиоактивный изотоп 192 Ir используют в качестве портативного источника g-излучения для радиографических исследований трубопроводов и радиотерапии онкологических заболеваний. До 1960 международным эталоном метра служил изготовленный из платино-иридиевого сплава брус, находящийся в Международном бюро мер и весов в Севре. На одной из плоскостей этого бруса нанесены два штриха, на расстоянии 1 м друг от друга.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "иридий" в других словарях:

    - (от греч. iris радуга). Металл, из группы платины, соединения которого отличаются радужными цветами. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ИРИДИЙ благородный металл серого цвета; уд. вес 22,5. Плавится… … Словарь иностранных слов русского языка

    М л, Ir. Куб. Белый. Тв. 7. Уд. в. 22,6. Наблюдался только при микроскопических исследованиях в виде продуктов распада в Pt. Возможно, содержит Pt и близок к. платинистому Ir. Не изучен. Геологический словарь: в 2 х томах. М.: Недра. Под… … Геологическая энциклопедия

    ИРИДИЙ, ирид муж. весьма твердый, беловатый металл, находимый обычно в сплаве с осмием и вместе с платиной. Иридиевый, иридовый, к металлу иридию относящийся. Иридистый, содержащий примесь иридия. Толковый словарь Даля. В.И. Даль. 1863 1866 … Толковый словарь Даля

    - (Iridium), Ir, химический элемент VIII группы периодической системы, атомный номер 77, атомная масса 192,22; относится к платиновым металлам. Открыт английским химиком С. Теннантом в 1804 … Современная энциклопедия

Иридий - химический элемент с атомным номером 77 в периодической системе, обозначается символом Ir (лат. Iridium ).

История открытия иридия

В 1804 году английский химик Смитсон Теннант, исследуя черный порошок, остающийся после растворения самородной платины в царской водке, открыл в нем два новых элемента. Соли одного из них были окрашены буквально во все цвета радуги. Теннанту не пришлось долго ломать голову в поисках подходящего для него имени: элемент был назван иридием, так как по-гречески "ириоэйдес" - радужный.
Судьбы платиновых металлов переплелись настолько тесно, что рассказ об одном из них немыслим без упоминания о других. В 1840 году профессор Казанского университета К. К. Клаус заинтересовался проблемами переработки уральской платиновой руды. По его просьбе петербургский Монетный двор прислал ему пробы платиновых остатков - нерастворимого осадка, образующегося после обработки сырой платины царской водкой. "При самом начале работы, - писал позднее ученый, - я был удивлен богатством моего остатка, ибо извлек из него, кроме 10% платины, немалое количество иридия, родия, осмия, несколько палладия и смесь различных металлов особенного содержания..."
Если в первое время Клаус ставил перед собой лишь чисто практическую цель- найти способ переработки остатков платиновой руды в платину, то уже вскоре эти исследования приобрели более глубокий научный характер и полностью захватили ученого. "Два полных года, - вспоминал Клаус, - я кряхтел над этим с раннего утра до поздней ночи, жил только в лаборатории, там обедал и пил чай, и при этом стал ужасным эмпириком". Последнее утверждение имело вполне конкретный смысл: по словам А. М. Бутлерова -
ученика Клауса, тот "имел привычку... при растворении платиновых руд в царской водке мешать жидкость прямо всеми пятью пальцами и определял крепость непрореагировавших кислот на вкус". Впрочем, это было свойственно не только Клаусу, но и другим химикам старой школы, которые, получив какое-либо вещество, всегда "дегустировали" его (до середины XIX века при описании свойств вещества необходимо было указать и его вкус), подвергая себя большой опасности: так, знаменитый шведский ученый Карл Шееле погиб, попробовав на вкус полученную им безводную синильную кислоту. Труды Клауса увенчались успехом: способ переработки платиновых остатков был найден, и теперь ученому предстояло ехать в Петербург, чтобы сообщить об этом министру финансов Е. Ф. Канкрину, заинтересованному в удачном решении проблемы. Для поездки в столицу Клаус вынужден был занять 90 рублей у одного из своих друзей (вернуть долг ученый смог лишь спустя несколько лет, когда приобрел всемирную известность). По приезде вПетербург Клаус был уже через два дня принят министром и добился от него санкции на получение необходимых для продолжения исследований материалов. Ему были выданы 1/2 фунта платиновых остатков и 1/4 фунта сырой платины. Вернувшись в Казань, ученый вновь с головой окунулся в работу, которая продолжалась много лет и дала блестящие результаты. Важнейшим из них стало открытие в 1844 году неизвестного ранее химического элемента - последнего"русского члена платинового семейства". "Уже при первой работе, - писал Клаус, - я заметил присутствие нового тела, но сначала не нашел способа отделения его от примесей. Более целого года трудился я над этим предметом, но наконец открыл легкий и верный способ добывания его в чистом состоянии. Этот новый металл, который назван мною рутением в честь нашего отечества (от латинского названия России - С. В.), принадлежит без
сомнения к телам весьма любопытным".
Но открытие Клауса не сразу получило признание. Первые пробы соединений нового элемента ученый послал в Стокгольм Й.Я. Берцелиусу, пользовавшемуся огромным авторитетом у всех химиков. Каково же было разочарование Клауса, когда он узнал, что, по мнению этого маститого ученого, присланное ему вещество не содержит новый элемент, а представляет собой плохо очищенное соединение иридия. Убежденный в своей правоте Клаус снова и снова проводил опыты, забывая порой об элементарных мерах защиты. Правда, спустя несколько лет ученый предупреждал своих коллег: "При работе с осмиевым иридием надобно остерегаться от паров осмиевой кислоты. Это весьма летучее
вещество принадлежит к самым вредным телам и действует преимущественно на легкие и на глаза, производя сильные воспаления. Я много терпел от нее". Слишком велико было желание Клауса убедить научный мир в том, что действительно открыт новый элемент, и он, наконец, сумел это сделать. Препараты соединений рутения опять были посланы Берцелиусу, и тот, проведя тщательные исследования, понял, что прежде ошибался в своих выводах. "Примите мои искренние поздравления с превосходными открытиями и изящной их обработкой, - писал он Клаусу, - благодаря им Ваше имя будет неизгладимо начертано в истории химии".
Итогом напряженной работы Клауса стал опубликованный в 1845 году труд"Химическое исследование остатков уральской платиновой руды и металла рутения", в котором впервые были всесторонне описаны и свойства иридия, причем сам Клаус отмечал, что иридием он занимался больше, чем другими металлами платиновой группы. Рекомендации ученого стали научной базой для создания технологии получения иридия и других платиноидов.

Нахождение иридия в природе

Содержание иридия в земной коре ничтожно мало (10 −7 масс. %). Он встречается гораздо реже золота и платины и вместе с родием, рением и рутением относится к наименее распространённым элементам. Однако иридий относительно часто встречается в метеоритах и не исключено, что реальное содержание металла на планете гораздо выше: его высокая плотность и высокое сродство к железу (сидерофильность) могли привести к смещению иридия вглубь Земли, в ядро планеты, в процессе её формирования из расплава.

Физические свойства иридия

Тяжёлый серебристо-белый металл, из-за своей твердости плохо поддающийся механической обработке.
Решётка кубическая гранецентрированная, а 0 =0,38387 нм
Электрическое сопротивление - 5,3·10 −8 Ом·м (при 0 °C)
Коэффициент линейного расширения - 6,5×10 −6 град
Модуль нормальной упругости - 52,029×10 6 кг/мм²

Химические свойства иридия

Важнейшие соединения с металлом иридий

Гидроксид иридия(III) Ir(OH) 3 , точнее гидратированный оксид иридия(III) Ir 2 O 3 *nH 2 O осадок зеленого цвета, получается осаждением из раствора хлороиридата (III) натрия Na 3 . Соединения иридия(III) - восстановители, Ir(OH) 3 кислородом окисляется до Ir(OH) 4 . Ir 2 O 3 при нагревании диспропорционирует на Ir и IrO 2 .
Оксид иридия (IV). IrO 2 получается в виде сине-черного порошка при разложении гидроксида или окислением иридия. Резисторный материал.
Гидроксид иридия (IV) Ir(OH) 4 . Темно-синее аморфное вещество, в воде, растворах кислот и щелочей не растворимо, кроме концентрированной серной кислоты. Получается при щелочном гидролизе (NH 4) 2 .
Галогениды. Продуктом прямого взаимодействия иридия с фтором является гексафторид иридия IrF 6 . Это соединение очень активно, оно не только реагирует с водой по уравнению
IrF 6 + 5H 2 O = Ir(OH) 4 + 6HF + 1/2O 2 ,
но окисляет даже хлор, причем образуются IrF 4 и ClF. Используется для нанесения покрытий.
Хлориды иридия(III) и (IV), кристаллы, гидролизуются водой. Характерно образование комплексных хлоридов при взаимодействии с хлоридами щелочных металлов: Na 3 - зеленые кристаллы, Na 2 - темно-красный, растворим, гексахлороиридаты(IV) калия и аммония - малорастворимы.
Соли иридия. Вообще иридий образует мало обычных солей. Соли иридия(III) с комплексными катионами аналогичны соответствующим солям хрома (III) и кобальта(III), представляют собой прочные комплексные соединения X 3 , X 3 , X 2 .
Карбонилы иридия: желто-зеленый Ir 2 (CO) 8 , возгоняется, и ярко-желтый Ir 4 (CO) 12 , при нагревании разлагается. Используются для нанесения покрытий.

Помимо уже известного вам иридия-192, имеется еще 14 радиоактивных изотопов этого элемента с массовыми числами от 182 до 198. У самого тяжелого изотопа - самая короткая жизнь: его период полураспада меньше минуты. Любопытно, что период полураспада иридия-183 - ровно час. Стабильных же изотопов у элемента всего два - иридий-191 и иридий-193. На долю более "весомого" из них в природной смеси приходится примерно 62 % атомов.

С изотопом иридия связано открытие так называемого эффекта Мссбауэра, на котором основаны поразительно точные методы измерения малых величин и слабых явлений, широко применяемые в физике, химии, биологии, геологии. Этот эффект (или, выражаясь строго научно, резонансное ядерное поглощение гамма -квантов в твердых телах без отдачи) был обнаружен молодым физиком из ФРГ Рудольфом Мссбауэром в 1958 году. За несколько лет до этого, когда учеба в Высшем техническом училище в Мюнхене подходила к концу, он стал подыскивать тему для дипломной работы. Один из профессоров любезно предложил студенту длинный перечень тем. Как вспоминает сам Мссбауэр, ни одна из них не пришлась ему по вкусу, кроме последней (кстати, тринадцатой по счету), главное достоинство которой, по мнению будущего физика, заключалось в том, что он не имел о ней ни малейшего представления. Речь шла о резонансном поглощении гамма- квантов атомными ядрами. "Самым главным, - вспоминает физик, - было то, что меня ткнули носом в это дело". И "это дело" пошло на лад. Сначала был защищен диплом, спустя два года пришел черед диссертации, а еще через год состоялось открытие. Работая в Гейдельберге, в Институте медицинских исследований имени Макса Планка, ученый продолжал заниматься резонансным поглощением. Специальным счетчиком он определял число гамма- квантов, прошедших через металлический иридий, точнее, через один из его изотопов; источниками этих гамма- квантов были возбужденные атомные ядра того же самого изотопа. Ядра, пребывающие в обычном состоянии, могут также "возбудиться", но для этого они должны, поглотив гамма-квант, получить такое количество энергии, которое в точности соответствует разности между энергиями ядра в возбужденном и основном состояниях (это поглощение и называется резонансным). Обычно же энергия гамма -квантов оказывается чуть меньше, чем нужно, так как часть ее теряется при испускании на отдачу испускающего ядра (нечто подобное происходит, например, при выстреле из пушки или ружья).

Чтобы устранить некоторые побочные процессы, способные исказить результаты опытов, Мссбауэр решил охладить иридий до температуры жидкого азота. При этом он полагал, что из-за уменьшения скорости движения ядер резонансное поглощение уменьшится, а число прошедших через иридий гамма -квантов соответственно возрастет (того же мнения придерживались и другие физики). К удивлению экспериментатора все оказалось наоборот. В чем же причина? Ученый делает вывод: в твердых телах при достаточно низкой температуре отдачу воспринимает не отдельное ядро, а все вещество в целом, и поэтому потери энергии на отдачу исчезающе малы, т. е. энергия гамма -кванта точно

равна разности энергии ядра в возбужденном и основном состояниях. Это открытие было признано одним из наиболее важных научных событий нашего времени (в 1961 году Мссбауэр удостоен Нобелевской премии). Сегодня эффект Мссбауэра обнаружен уже на нескольких десятках элементов, но история науки навсегда связала открытие этого важнейшего физического явления с героем нашего рассказа - иридием.

Получение иридия

Основной источник получения иридия - анодные шламы медно-никелевого производства. Из концентрата металлов платиновой группы отделяют Au, Pd, Pt и др. Остаток, содержащий Ru, Os и Ir, сплавляют с KNO 3 и КОН, сплав выщелачивают водой, раствор окисляют Cl 2 , отгоняют OsO 4 и RuO 4 , а осадок, содержащий иридий, сплавляют с Na 2 O 2 и NaOH, сплав обрабатывают царской водкой и раствором NH 4 Cl, осаждая иридий в виде (NH 4) 2 , который затем прокаливают, получая металлический Ir. Перспективен метод извлечения иридия из растворов экстракцией гексахлороиридатов высшими алифатическими аминами. Для отделения иридия от неблагородных металлов перспективно использование ионного обмена. Для извлечения иридия из минералов группы осмистого иридия минералы сплавляют с ВаО 2 , обрабатывают соляной кислотой и царской водкой, отгоняют OsO 4 и осаждают иридий в виде (NH 4) 2 .

В наше время чистый иридий выделяют из самородного осмиридия и из остатков платиновых руд, но прежде из них, действуя различными реагентами, извлекают платину, осмий, палладий и рутений и лишь после этого наступает очередь иридия. Полученный при этом порошок либо прессуют в полуфабрикаты и сплавляют, либо переплавляют в электрических печах в атмосфере аргона. При обычной температуре иридий хрупок и не поддается никакой обработке, но в горячем состоянии он более "сговорчив" и позволяет себя ковать.

Применение иридия

Сплавы с W и Th - материалы термоэлектрических генераторов, с Hf - материалы для топливных баков в космических аппаратах, с Rh, Re, W - материалы для термопар, эксплуатируемых выше 2000 °C, с La и Се - материалы термоэмиссионных катодов.

Иридий используется также для изготовления перьев для ручек. Небольшой шарик из иридия можно встретить на кончиках перьев и чернильных стержней, особенно хорошо его видно на золотых перьях, где он отличается по цвету от самого пера.

Иридий – металл и химический элемент. Элемент стоит в таблице Менделеева под атомным номером 77. Считается выходцем из благородных пород, твёрдый, имеет бело-золотой цвет.

Минерал существует в чистом виде, но первые упоминания об изотопном металле связаны с падением на Землю железоникелевого метеорита. Столкновение с Землёй метеорита произошло 65 млн лет назад, в эпоху трицерапторов и дипладоков. В Земле упавший объект оставил след, последствия которого видны и сегодня. Образовался кратер в 180 километров глубиной, пыль, поднявшаяся из-за нарушения земной коры и падения метеорита, заставила Землю пребывать во мгле 14 дней, случились извержения вулканов на территории Азии, Индостана и Мадагаскара.

Некоторые учёные предполагают, что именно этот металл погубил всех динозавров и других крупных ящеров, из-за того, что начал выделять токсин при соприкосновении с хлором и земным ядром. Как известно, металл плавится при 2300 градусов по Цельсию.

Так, он лежал в Земле все 65 млн лет, пока его не обнаружили по случайности люди, искавшие платину и нашедшие её на месте старого кратера.

Как земной элемент, иридий был обнаружен в 1804 году, учёным С. Теннатом. В результате проведения процедур по изучению платиновых минералов и выявления в них осмия, был обнаружен иридий.

Вот так Юкатанская катастрофа привела к тому, что в периодической таблице появился Иридий.

Происхождение металла

Иридий – платаноид, являющийся продуктом многофазового ядерного синтезирования элементов. На планете среди других металлов (из 1005) он занимает всего лишь 3%-ое значение, что означает нечастое его обнаружение. Учёные считают, что иридий скрыт в земном ядре или же в расплавленном железоникелевом слое (внешнее ядро).

В земной коре встречается в виде сплава с осмием или платиной.

Как получают

О том, что этот металл встречается только в сплавах, мы уже сказали. Но каким образом возможно получить иридий?
Источником породы является анодный шлам медноникелевого производства. Продукт – шлам насыщают, после чего, под действием «царской водки», переводят из состояния твёрдого в жидкое, в виде соединений хлорида H2.

В результате химики получают жидкую смесь металлов и добавляют в неё хлорид аммония NH4Cl. После чего производят выведение осадка из платины, а потом получают комплекс иридия (NH4)2. (NH4)2 прокаливают при помощи кислорода и азота. На выходе получаете металлический иридий.

Места добычи

Химический элемент встречается в сплавовом виде в складчатых земных породах гор России, перетонитовых породах, расположенных в ЮАР, Кении, Южной Америке и т. д.

Где есть платина, там есть и иридий.

О характеристиках металла, как химического элемента:

Характеристика Обозначение, значение
Иридий обозначается символом Ir
Номер в таблице Менделеева 77
Вес атома 192,22 а.е.м.
Степени окисления От 1 до 6 (5 не входит)
Плотность при комнатной температуре 22,7 г/см^3
Плотность в жидком состоянии 19,39 г/см^3
Плавление При 2300 градусов по Цельсию
Кипение жидкого иридия При 45 градусах Цельсия
Имеет кристаллическую решётку Гранецентрированного куба

Элемент встречается разных цветов, самый распространённый – белый – KIrF6, лимонный – IrF5, золотой – K3IrCl6, светло-зелёный – Na3IrBr6, розовый – Cs3IrI6, малиновый – Na2IrBr6, тёмно-синий – IrI3. Разнообразие цветов обусловлено наличием в иридии различных солей.

Кстати, название своё металл получил за счёт этого разноцветия. Ирида – это богиня радуги в греческой мифологии.

Свойства и особенности


Где применяется

В основном применяют не сам иридий, а его сплавы с металлами.

Сплав из иридия и платины применяют для изготовления посуды, для проведения химических опытов, создания хирургического инвентаря, ювелирных украшений и нерастворимых анодов. Ещё медно-иридиевую смесь используют для прибороточного строения. Этот сплав является особо прочным, его используют для покрытия сварочных узлов в строительных объектах.

Также иридий смешивают с гафнием, в таком случае сплав послужит инструментом для создания топливных баков.

Когда изотопный металл смешивают с вольфрамом, родием или же рением, то из полученной субстанции изготавливают термопары. Термопары – приборы для измерения температур более 2000 градусов.

Иридий, совместно с церием, латаном применяют в производстве катодов.

А вот один иридий, без вспомогательных элементов, используют для создания наконечников перьевых ручек.

Иридий применяют в крупных промышленных масштабах для создания иридиевых свеч сгорания. Такие свечи прослужат на 3 года дольше, чем обычные и выдержат пробег автомашины на 160 тысяч километров больше, чем стандартные.

За счёт иридия облегчилось строение дефектоскопов, которые выявляют все недостатки механизмов ручного запуска.

Кроме применения в медицине и промышленности, химический элемент берут за основу проведения многих химических операций. Он является термическим, химическим катализатором для ускорения получений конечного химического продукта. К примеру, его часто применяют для получения азотной кислоты.

За счёт иридия, в жаростойких тиглях выращивают кристаллы, которые необходимы для лазерной техники. Благодаря учёным и этому дару природы, стала возможной операция по лазерной коррекции зрения, по лазерному дроблению камней в почках и т. д.

Область применения металла велика, однако стоимость его довольно высокая, поэтому часто иридий заменяют синтетическими химозными элементами, которые уступают природному аналогу во всём.

Это незаменимый , который необходим для функционирования машин, строительных объектов, создания прочных механизмов и прочего.

Из чистого иридия делают тигли для лабораторных целей и мундштуки для выдувания тугоплавкого стекла. Можно, конечно, использовать и в качестве покрытия. Однако здесь встречаются трудности. Обычным электролитическим способом на другой металл наносится с трудом, и покрытие получается довольно рыхлое. Наилучшим электролитом был бы комплексный гексахлорид иридия, однако он неустойчив в водном растворе, и даже в этом случае качество покрытия оставляет желать лучшего.

Разработан метод получения иридиевых покрытий электролитическим путем из расплавленных цианидов калия и натрия при 600° С. В этом случае образуется плотное покрытие толщиной до 0,08 мм.

Менее трудоемко получение иридиевых покрытий методом плакирования. На основной металл укладывают тонкий слой металла-покрытия, а затем этот «бутерброд» идет под горячий пресс. Таким образом получают вольфрамовую и молибденовую проволоку с иридиевым покрытием. Заготовку из молибдена или вольфрама вставляют в иридиевую трубку и проковывают в горячем состоянии, а затем волочат до нужной толщины при 500-600° С. Эту проволоку используют для изготовления управляющих сеток в электронных лампах.

Можно наносить иридиевые покрытия на и керамику химическим способом. Для этого получают раствор комплексной соли иридия, например с фенолом или каким-либо другим органическим веществом. Такой раствор наносят на поверхность изделия, которое затем нагревают до 350-400° С в контролируемой атмосфере, т. е. в атмосфере с регулируемым окислительно-восстановительным потенциалом. Органика в этих условиях улетучивается, или выгорает, а слой иридия остается на изделии.

Но покрытия - не главное применение иридия. Этот металл улучшает механические и физико-химические свойства других металлов. Обычно его используют, чтобы повысить их прочность и твердость. Добавка 10% иридия к относительно мягкой платине повышает ее твердость и предел прочности почти втрое. Если же количество иридия в сплаве увеличить до 30%, твердость сплава возрастет ненамного, но зато предел прочности увеличится еще вдвое -до 99 кг/мм 2 . Поскольку такие обладают исключительной коррозионной стойкостью, из них делают жаростойкие тигли, выдерживающие сильный нагрев в агрессивных средах. В таких тиглях выращивают, в частности, кристаллы для лазерной техники. Платино-иридиевые привлекают и ювелиров - украшения из этих сплавов красивы и почти не изнашиваются. Из пла-тино-иридиевого сплава делают также эталоны, иногда - хирургический инструмент.

В будущем иридия с платиной могут приобрести особое значение в так называемой слаботочной технике как идеальный материал для контактов. Каждый раз, когда происходит замыкание и размыкание обычного медного контакта, возникает искра; в результате поверхность меди довольно быстро окисляется. В контакторах для сильных токов, например для электродвигателей, это явление не очень вредит работе: поверхность контактов время от времени зачищают наждачной бумагой, и контактор вновь готов к работе. Но, когда мы имеем дело со слаботочной аппаратурой, например в технике связи, тонкий слой окиси меди весьма сильно влияет на всю систему, затрудняет прохождение тока через контакт. А именно в этих устройствах частота включений бывает особенно большой - достаточно вспомнить АТС (автоматические телефонные станции). Вот здесь-то и придут на помощь необгорающие платино-иридиевые контакты - они могут работать практически вечно! Жаль только, что эти сплавы очень дороги и пока их недостаточно.

Добавляют не только к платине. Небольшие до-бавки элемента № 77 к вольфраму и молибдену увеличивают прочность этих металлов при высокой температуре. Мизерная добавка иридия к титану (0,1%) резко повышает его и без того значительную стойкость к действию кислот. же относится и к хрому. Термопары, состоящие из иридия и сплава иридия с родием (40% родия), надежно работают при высокой температуре в окислительной атмосфере. Из сплава иридия с осмием делают напайки для перьев авторучек и компасные иглы.

Резюмируя, можно сказать, что металлический иридий применяют главным образом из-за его постоянства - постоянны размеры изделий из металла, его физические и химические свойства, причем, если можно так выразиться, постоянны на высшем уровне.

Как и другие VIII группы, иридий может быть использован в химической промышленности в качестве катализатора. Иридиево-никелевые катализаторы иногда применяют для получения пропилена из ацетилена и метана. Иридий входил в состав платиновых катализаторов реакции образования окислов азота (в процессе получения азотной кислоты). Один из окислов иридия, IrO 2 , пытались применять в фарфоровой промышленности в качестве черной краски. Но слишком уж дорога эта краска…

Запасы иридия на Земле невелики, его содержание в земной коре исчисляется миллионными долями процента. Невелико и производство этого элемента - не больше тонны в год. Во всем мире!

В связи с этим трудно предположить, что со временем в судьбе иридия наступят разительные перемены - он навсегда останется редким и дорогим металлом. Но там, где его применяют, он служит безотказно, и в этой уникальной надежности залог того, что наука и промышленность будущего без иридия не обойдутся.

ИРИДИЕВЫЙ СТОРОЖ. Во многих химических и металлургических производствах, например в доменном, очень важно знать уровень твердых материалов в агрегатах. Обычно для такого контроля используют громоздкие зонды, подвешиваемые на специальных зондовых лебедках. В последние годы зонды стали заменять малогабаритными контейнерами с искусственным радиоактивным изотопом - иридием-192. Ядра 192 Ir испускают гамма-лучи высокой

энергии; период полураспада изотопа равен 74.4 суток, часть гамма-лучей поглощается шихтой, и приемники излучения фиксируют ослабление потока. Последнее пропорционально расстоянию,

которое проходят лучи в шихте. Иридий-192 с успехом применяют и для контроля сварных швов; с его помощью на фотопленке четко фиксируются все непроваренные места и инородные включения. Гамма-дефектоскопы с иридием-192 используют также для контроля качества изделий из стали и алюминиевых сплавов.

ЭФФЕКТ МЁССБАУЭРА. В 1958 г. молодой физик из Германии Рудольф

Мёссбауэр сделал открытие, обратившее на себя внимание всех физиков мира. Открытый Мёссбауэром эффект позволил с поразительной точностью измерять очень слабые ядерные явления. Через три года после открытия, в 1961 г., Мёссбауэр получил за свою работу Нобелевскую премию. Впервые этот эффект обнаружен на ядрах изотопа иридий-192.

БЬЕТСЯ АКТИВНЕЕ. Одно из наиболее интересных при менений платино-иридиевых сплавов за последние годы - изготовление из них электрических стимуляторов сердечной деятельности. В больного стенокардией вживляют электроды с пла-тино-иридиевыми зажимами. Электроды соединены с приемником, который тоже находится в теле больного. Генератор же с кольцевой антенной находится снаружи, например в кармане больного. Кольцевая антенна крепится на теле напротив приемника. Когда больной чувствует, что наступает приступ стенокардии, он включает генератор. В кольцевую антенну поступают импульсы, которые передаются в приемник, а от него - на платино-иридисвые электроды. Электроды, передавая импульсы на нервы, заставляют биться активнее.

СТАБИЛЬНЫЕ И НЕСТАБИЛЬНЫЕ. В предыдущих заметках довольно много говорилось о радиоизотопе иридий-192, применяемом в многочисленных приборах и даже причастном к важному научному открытию. Но, кроме иридия-192, у этого элемента есть еще 14 радиоактивных изотопов с массовыми числами от 182 до 198. Самый тяжелый изотоп в же время - самый ко-роткоживущий, его период полураспада меньше минуты. Изотоп иридий-183 интересен лишь тем, что его период полураспада - ровно один час. Стабильных же изотопов у иридия всего два. На долю более тяжелого - иридия-193 в природной смеси приходится 62,7%. Доля легкого иридия-191 соответственно 37,3%.

Немецкая компания по продаже драгоценных металлов Degussa Goldhandel GmbH начала впервые предлагать частным инвесторам слитки иридия и рутения. Предложение этих драгоценных металлов в качестве инвестиционного продукта является новым шагом на рынке.
Помимо традиционных драгметаллов как золото, серебро, платина, палладий и родий теперь инвесторы смогут купить инвестиционные слитки иридия и рутения чистотой 999/1000 и массой в 1 унцию (31,1 грамм).

Производство иридия и рутения является сложным металлургическим процессом. В основном эти драгметаллы используются в промышленности. Также широкое применение они нашли в медицинской технике, машиностроении и химической промышленности. Для промышленных потребителей Degussa предлагает иридий и рутений в виде порошка.

Стоимость 1 слитка иридия на 23 февраля 2018 составляет € 1200, рутения — €372, родиума — €1975.

Подробнее об иридии

Иридий в палеонтологии и геологии является индикатором слоя, который сформировался сразу после падения метеоритов, что не случайно — иридий относительно часто встречается в метеоритах и считается космическим металлом.

Еще до открытия кратера Чискулуба многие ученые обратили внимание на большое количество иридия в отложениях, возраст которых совпадает с исчезновением последних динозавров. Это убедило палеонтологов в том, что ответственность за вымирание этих гигантских ящеров лежит именно на астероиде. Эти же слои отложений содержат огромное количество углерода в виде сажи.

Предполагается, что кратер Чискулуба образовался в результате удара астероида диаметром около 10 км. Энергия удара оценивается в 5·1023 джоулей или в 100 тератонн в тротиловом эквиваленте (для сравнения, крупнейшее термоядерное устройство имело мощность порядка 0,00005 тератонны, что в 2 миллиона раз меньше.

Небольшое количество иридия было обнаружено в фотосфере Солнца.

Иридий (др.-греч. ἶρις - радуга) получил такое название благодаря разнообразной окраске своих солей
– тугоплавкий металл, относящийся к платиновой группе. Иридий имеет серебристо-белый цвет, является тугоплавким и твердым металлом. Плотность иридия наряду с плотностью осмия является самой высокой среди всех металлов. Металл имеет высокие антикоррозийные свойства при сверхвысоких температурах до 2000 C.

Иридий входит в группу самых дорогих металлов и по своей стоимости уступает лишь родию, платине и золоту. В природе металл встречается вместе с рутением, рением и родием. Металл является одним из компонентов таких минералов, как ауросмирид, сысертскит и невьянскит.

Добыча иридия

Промышленные предприятия добывают иридий из шламов, образующихся при медно-никелевом производстве. Добыча иридия проходит в несколько этапов: получение концентрата, выщелачивание чернового металла, очищение от примесей. При отделении иридия от металлов, которые не относятся к благородным, может быть использован метод ионного обмена. При извлечении металла из минералов процесс добычи проходит этап сплавки с оксидом бария, обработку царской водкой и раствором соляной кислоты. В результате при отделении осмия получают комплексное соединение, которое необходимо прокалить для того, чтобы получить чистый иридий.

Сплав иридия с платиной позволяет получить материал с высокими прочностными характеристиками, данный сплав не подвержен окислению. Из этого сплава, в частности, изготовлен эталон килограмма .

Российские предприятия-производители иридия:

— ОАО «Красцветмет»;
— НПП «Биллон»;
— ОАО ГМК «Норильский Никель».

Применение иридия

    • В электротехническом и электрохимическом секторах . Для химически и термически стойкой посуды, и катализатором, ускоряющим реакции, в частности получение азотной кислоты. В чашах из сплава платины с иридием производится растворение золота с помощью смеси кислот, называемых «царской» водкой.
    • В качестве источника электроэнергии используется ядерный изомер иридия – иридий-192m2. Как компонент сплавов металл применяется для изготовления термоэлектрических генераторов, термопар, термоэмиссионных катодов и топливных баков. Иридий-192 является радионуклидом с периодом полураспада 74 сут, широко применяемым в дефектоскопии, особенно в условиях, когда генерирующие источники не могут быть использованы (взрывоопасные среды, отсутствие питающего напряжения нужной мощности).
    • В медицине. Из иридия получают высокопрочное защитное покрытие для керамики и металлов. Добавка иридия позволяет улучшить прочностные свойства и твердость других металлов. Применяют металл для производства высокопрочного хирургического инструмента.
    • Для изготовления тиглей. Металл используют в качестве основного материала, в которых в дальнейшем выращивают монокристаллы особой чистоты. Тигли из иридия используют и для варки высококачественного стекла.
    • Для изготовления перьев для ручек. Небольшой шарик из иридия можно встретить на кончиках перьев и чернильных стержней, особенно хорошо его видно на золотых перьях, где он отличается по цвету от самого пера.
    • В свечах зажигания в качестве материала для изготовления электродов, делая такие свечи наиболее долговечными (100-160 тыс. км пробега автомобиля) и снижая требования к напряжению искрообразования. Изначально использовался в авиации и гоночных автомобилях, затем, по мере снижения стоимости продукции, стал употребляться и на массовых автомобилях. В настоящее время такие свечи доступны для большинства двигателей, однако являются наиболее дорогими.
    • В ювелирном деле иридий стали использовать совсем недавно. В России в 1999 году из него были изготовлены кольца, а следом — золотые изделия, украшенные иридиевой инкрустацией. Излюбленным материалом для ювелиров является иридиево-платиновый сплав. Добавка 10% этого супертвердого вещества улучшает прочность платины в три раза, а изделия приобретают несравнимой красоты внешний вид и безукоризненную прочность.

Первый набор в истории нумизматики с монетой из иридия

Монета из иридия вошла в набор монет Руанды. В набор вошли пять монет, номинал каждой 10 руандийских франков. Монеты обладают одинаковым диаметром 11 мм. Каждая монета из драгоценного металла упакована в органическое стекло.
На лицевой стороне монет изображен герб Руанды, на реверсе - голова льва и технические характеристики монеты: металл, из которого отчеканена каждая монета и год эмиссии «2013».

Монета из золота 999-й пробы (proof), ее масса 1/100 oz.
Монета из серебра 999-й пробы (proof), масса монеты 1/25 oz.
Монета из иридия 999-й пробы (BU), ее масса 1/25 oz.
Монета из палладия 999-й пробы (proof), масса такой монеты 1/100 oz.
Монета из платины 999-й пробы (proof) ее масса 1/100 oz.

Тираж набора - 1000 шт.