Когда была получена первая пластмасса. История возникновения пластика

Нашу цивилизацию можно назвать цивилизацией пластика: разнообразные виды пластмасс и полимерных материалов можно встретить буквально повсюду.


Однако обычный человек вряд ли хорошо представляет себе, что такое пластик и из чего его делают.

Что такое пластик?

В настоящее время пластиками, или пластмассами, называют целую группу материалов искусственного (синтетического) происхождения. Их производят путём цепочки химических реакций из органического сырья, преимущественно из природного газа и тяжёлых фракций нефти. Пластики представляют собой органические вещества с длинными полимерными молекулами, которые состоят из соединённых между собой молекул более простых веществ.

Изменяя условия полимеризации, химики получают пластики с нужными свойствами: мягкие или твёрдые, прозрачные или непрозрачные и т.д. Пластики сегодня используются буквально во всех сферах жизни, от производства компьютерной техники до ухода за маленькими детьми.

Как были изобретены пластмассы?

Первый в мире пластик был изготовлен в английском городе Бирмингем специалистом-металлургом А. Парксом. Это случилось в 1855 году: изучая свойства целлюлозы, изобретатель обработал её азотной кислотой, благодаря чему запустил процесс полимеризации, получив нитроцеллюлозу. Созданное им вещество изобретатель назвал собственным именем – паркезин. Паркс открыл собственную компанию по производству паркезина, который вскоре стали называть искусственной слоновой костью. Однако качество пластика было низким, и компания вскоре разорилась.

В дальнейшем технология была усовершенствована, и выпуск пластика продолжил Дж.У. Хайт, который назвал свой материал целлулоидом. Из него изготавливались самые разные товары, от воротничков, которые не нуждались в стирке, до бильярдных шаров.

В 1899 году был изобретён полиэтилен, и интерес к возможностям органической химии многократно вырос. Но до середины ХХ века пластики занимали довольно узкую нишу рынка, и только создание технологии производства ПВХ позволило изготавливать из них широчайший спектр бытовых и промышленных изделий.

Разновидности пластиков

В настоящее время промышленностью выпускается и используется множество разновидностей пластиков.

По своему составу пластмассы подразделяются на:

— листовые термопластические массы – оргстекло, винилпласты, состоящие из смол, пластификатора и стабилизатора;


— слоистые пластики, армированные одним или несколькими слоями бумаги, стеклоткани и т.д.;

— волокниты – пластики, армированные стекловолокном, асбестовым волокном, хлопчатобумажным и т.д.;

— литьевые массы – пластики, не имеющие в составе других компонентов, кроме полимерных соединений;

— пресс-порошки – пластики с порошкообразными добавками.

По типу полимерного связующего пластики подразделяются на:

— фенопласты, которые изготавливаются из фенолформальдегидных смол;

— аминопласты, изготавливаемые из меламинформальдегидных и мочевиноформальдегидных смол;

— эпоксипласты, использующие в качестве связующего эпоксидные смолы.

По внутренней структуре и свойствам пластики делятся на две большие группы:

— термопласты, которые при нагреве плавятся, но после охлаждения сохраняют свою первоначальную структуру;

— реактопласты, с исходной структурой линейного типа, при отверждении приобретающие сетчатую структуру, но при повторном нагреве полностью теряющие свои свойства.

Термопласты могут использоваться неоднократно, для этого их достаточно измельчить и расплавить. Реактопласты по рабочим качествам, как правило, несколько лучше термопластов, но при сильном нагреве их молекулярная структура разрушается и в дальнейшем не восстанавливается.

Из чего делают пластики?

Исходным сырьём для подавляющего большинства видов пластиков служат уголь, природный газ и нефть. Из них путём химических реакций выделяют простые (низкомолекулярные) газообразные вещества – этилен, бензол, фенол, ацетилен и др., которые затем в ходе реакций полимеризации, поликонденсации и полиприсоединения превращаются в синтетические полимеры. Превосходные свойства полимеров объясняются наличием высокомолекулярных связей с большим числом исходных (первичных) молекул.


Некоторые этапы производства полимеров представляют собой сложные и чрезвычайно опасные для окружающей среды процессы, поэтому производство пластиков становится доступным лишь на высоком технологическом уровне. При этом конечные продукты, т.е. пластмассы, как правило, абсолютно нейтральны и не оказывают никакого негативного воздействия на здоровье людей.

ИСТОРИЯ Первая пластмасса была получена английским металлургом и изобретателем Александром Парксом в 1855 году. Паркс назвал её паркезин (позже получило распространение другое название - целлулоид). Паркезин был впервые представлен на Большой Международной выставке в Лондоне в 1862 году. Развитие пластмасс началось с использования природных пластических материалов (жевательной резинки, шеллака), затем продолжилось с использованием химически модифицированных природных материалов (резина, нитроцеллюлоза, коллаген, галалит) и, наконец, пришло к полностью синтетическим молекулам (бакелит, эпоксидная смола, поливинилхлорид, полиэтилен и другие). Паркезин являлся торговой маркой первого искусственного пластика и был сделан из целлюлозы, обработанной азотной кислотой и растворителем. Паркезин часто называли искусственной слоновой костью. В 1866 году Паркс создал фирму Parkesine Company для массового производства материала. Однако, в 1868 году компания разорилась из-за плохого качества продукции, так как Паркс пытался сократить расходы на производство. Преемником паркезина стал ксилонит (другое название того же материала), производимый компанией. Даниэля Спилла, бывшего сотрудника Паркса, и целлулоид, производимый Джоном Весли Хайатом.

ТИПЫ ПЛАСТМАСС В зависимости от природы полимера и характера его перехода из вязкотекучего в стеклообразное состояние при формовании изделий пластмассы делят на: Термопласты (термопластичные пластмассы) - при нагреве расплавляются, а при охлаждении возвращаются в исходное состояние; Реактопласты (термореактивные пластмассы) - в начальном состоянии имеют линейную структуру макромолекул, а при некоторой температуре отверждения приобретают сетчатую. После отверждения не могут переходить в вязкотекучее состояние. Рабочие температуры выше, но при нагреве разрушаются и при последующем охлаждении не восстанавливают своих исходных свойств. Также газонаполненные пластмассы - вспененные пластические массы, обладающие малой плотностью.

СВОЙСТВА Основные механические характеристики пластмасс те же, что и для металлов. Пластмассы характеризуются малой плотностью (0, 85- 1, 8 г/см³), чрезвычайно низкими электрической и тепловой проводимостями, не очень большой механической прочностью. При нагревании (часто с предварительным размягчением) они разлагаются. Не чувствительны к влажности, устойчивы к действию сильных кислот и оснований, отношение к органическимрастворителям различное (в зависимости от химической природы полимера). Физиологически почти безвредны. Свойства пластмасс можно модифицировать методамисополимеризации или стереоспецифической полимеризации, путём сочетания различных пластмасс другом или с другими материалами, такими как стеклянное волокно, текстильная ткань, введением наполнителей и красителей, пластификаторов, тепло- и светостабилизаторов, облучения и др. , а также варьированием сырья, например использование соответствующих полиолов и диизоцианатов при получении полиуретанов.

ПОЛУЧЕНИЕ Производство синтетических пластмасс основано на реакциях полимеризации, поликонденсации или пол иприсоединения низкомолекулярных исходных веществ, выделяемых из угля, нефти или природного газа. При этом образуются высокомолекулярные связи с большим числом исходных молекул (приставка «поли-» от греческого «много» , например этилен-полиэтилен).

СИСТЕМА МАРКИРОВКИ ПЛАСТИКА Для обеспечения утилизации одноразовых предметов в 1988 году Обществом Пластмассовой Промышленности была разработана система маркировки для всех видов пластика и идентификационные коды. Маркировка пластика состоит из 3 -х стрелок в форме треугольника, внутри которых находится число, обозначающая тип пластика. Часто при маркировке изделий под треугольником указывается буквенная маркировка (в скобках указана маркировка русскими буквами)

Международные универсальные коды переработки пластмасс. Значок. Англоязычное название. Русское название. Примечание. PET или PETEПЭТ, ПЭТФ Полиэтилентерефталат. Обычно используется для производства тары для минеральной воды, безалкогольных напитков и фруктовых соков, упаковки, блистеров, обивки. PEHD или. HDPEПЭНД Полиэтилен высокой плотности, полиэтилен низкого давления. Производство бутылок, фляг, полужёсткой упаковки. Считается безопасными для пищевого использования. PVCПВХ Поливинилхлорид. Используется для производства труб, трубок, садовой мебели, напольных покрытий, оконных профилей, жалюзи, изоленты, тары длямоющих средств и клеёнки. Материал является потенциально опасным для пищевого использования, поскольку может содержатьдиоксины, бисфенол А, ртуть, кадмий. LDPE и PELDПЭВД Полиэтилен низкой плотности, полиэтилен высокого давления. Производство брезентов, мусорных мешков, пакетов, пленки и гибких ёмкостей. Считается безопасным для пищевого использования. PPПП Полипропилен. Используется в автомобильной промышленности (оборудование, бамперы), при изготовлении игрушек, а также в пищевой промышленности, в основном при изготовлении упаковок. Распространены полипропиленовые трубы для водопроводов. Считается безопасным для пищевого использования. PSПС Полистирол. Используется при изготовлении плит теплоизоляции зданий, пищевых упаковок, столовых приборов и чашек, коробок CD и прочих упаковок (пищевой плёнки и пеноматериалов), игрушек, посуды, ручек и так далее. Материал является потенциально опасным, особенно в случае горения, поскольку содержит стирол. OTHER или ОПрочие. К этой группе относится любой другой пластик, который не может быть включен в предыдущие группы. В основном это поликарбонат. Поликарбонат может содержать опасный для человека бисфенол Используется для изготовления твёрдых прозрачных изделий, как например детские рожки.

МЕБЕЛЬНЫЕ ПЛАСТМАССЫ Пластик, который используют для производства мебели, получают путем пропитки бумаги термореактивными смолами. Производство бумаги является наиболее энерго- и капиталлоемким этапом во всем процессе производства пластика. Используется 2 типа бумаг: основой пластика является крафт-бумага (плотная и небеленая) и декоративная (для придания пластику рисунка). Смолы подразделяются на фенолформальдегидные, которые используются для пропитки крафт-бумаги, и меламиноформальдегидные, которые используются для пропитки декоративной бумаги. Меламиноформальдегидные смолы производят из меламина, поэтому они стоят дороже. Мебельный пластик состоит из нескольких слоёв. Защитный слой - оверлей - практический прозрачный. Изготавливается из бумаги высокого качества, пропитывается меламиноформальдегидной смолой. Следующий слой - декоративный. Затем несколько слоев крафт-бумаги, которая является основой пластика. И последний слой - компенсирующий (крафтбумага, пропитанная меламиноформальдегидными смолами). Этот слой присутствует только у американского мебельного пластика. Готовый мебельный пластик представляет из себя прочные тонированные листы толщиной 1 -3 мм. По свойствам он близок к гетинаксу. В частности, он не плавится от прикосновения жалом паяльника, и, строго говоря, не является пластической массой, так как не может быть отлит в горячем состоянии, хотя и поддается изменению формы листа при нагреве. Мебельный пластик широко использовался в XX веке для отделки салонов вагонов метро.

ПЛАСТИКОВЫЕ ОТХОДЫ И ИХ ПЕРЕРАБОТКА Скопления отходов из пластмасс образуют в Мировом океане под воздействием течений особые мусорные пятна. На данный момент известны пять больших скоплений мусорных пятен - по два в Тихом и Атлантическом океанах, и одно - в Индийском океане. Данные мусорные круговороты в основном состоят из пластиковых отходов, образующихся в результате сбросов из густонаселённых прибрежных зон континентов. Руководитель морских исследований Кара Лавендер Ло из Ассоциации морского образования (англ. Sea Education Association; SEA) возражает против термина «пятно» , поскольку по своему характеру - это разрозненные мелкие куски пластика. Пластиковый мусор опасен ещё и тем, что морские животные, зачастую, могут не разглядеть прозрачные частицы, плавающие по поверхности, и токсичные отходы попадают им в желудок, часто становясь причиной летальных исходов . Взвесь пластиковых частиц напоминает зоопланктон, и медузы или рыбы могут принять их за пищу. Большое количество долговечного пластика (крышки и кольца от бутылок, одноразовые зажигалки) оказывается в желудках морских птиц и животных, в частности, морских черепахах и черноногих альбатросов. Помимо прямого причинения вреда животным, плавающие отходы могут впитывать из воды органические загрязнители, включая ПХБ (полихлорированные бифенилы), ДДТ (дихлордифенилтрихлорметилметан) и ПАУ (полиароматические углеводороды). Некоторые из этих веществ не только токсичны - их структура сходна с гормоном эстрадиолом, что приводит к гормональному сбою у отравленного животного. Пластиковые отходы должны перерабатываться, поскольку при сжигании пластика выделяются токсичные вещества, а разлагается пластик за 100- 200 лет.

Слово «полимер» — греческого происхождения. Буквально, полимер — это молекула, состоящая из многих («поли») частей («мерос»), каждая из которых представляет собой мономерную, то есть состоящую из одной («монос») части, молекулу. Проще говоря, полимеры — это разветвленные цепочки из обычных молекул, мономеров.

Так выглядит процесс выработки пластика сегодня


На наших глазах вилка исчезает


Как растят суперпластик Ученые создали генетически модифицированное растение, в семенах которого содержится органический полимер PHBV. Из него делают саморазрушающийся термопластик. Некоторые виды бактерий вырабатывают полимеры вроде PHBV, используя их как хранилище энергии, как крахмал у растений или гликоген у животных

В XX веке человечество пережило синтетическую революцию. Ее главным завоеванием можно смело назвать изобретение пластика. Сейчас даже трудно представить себе, что еще в начале прошлого века его просто не существовало и все вокруг делалось из модных нынче натуральных материалов.

Игра в мяч

Человечество, можно сказать, доигралось до изобретения пластика. В истории этого материала прослеживается мистическая связь с любовью людей к игре с мячом. Во II веке до нашей эры греки играли в мяч из желчного пузыря свиньи, наполненного воздухом. Этот спортивный снаряд по форме напоминал яйцо или, если угодно, мяч для регби. Уже тогда наши предки искали способ исправить форму мяча и сделать его абсолютно круглым. Древние греки без конца пробовали различные растительные добавки, чтобы придать стенкам свиного пузыря эластичность.

Индейцы майя делали мяч из кожуры плодов, обернутой в натуральный каучук, который они добывали из фикусов. Похожую технологию использовали жители островов Океании и Юго-восточной Азии. До ума, впрочем, ее довели только европейцы. В XIX веке из Малайзии в Европу было привезено гуттаперчевое дерево, из млечного сока которого стали добывать гуттаперчу. Первым изделием из нового материала стали шары для гольфа (а вовсе не цирковые мальчики). Сегодня этот материал используют для изоляции подводных и подземных кабелей и производства клеев.

От мяча эстафетная палочка перешла к бильярду. В 1862 году британский химик Александр Паркес решил придумать дешевый заменитель дорогостоящей слоновой кости, из которой делались бильярдные шары. Результатом стало открытие первого пластификатора.

Сперва Паркес изобрел нитроцеллюлозу. Однако ее свойства не подходили для игральных шаров, так как материал оказался легкобьющимся. Нужна была добавка, которая смягчила бы его, не уменьшив главное полезное свойство — упругость. Паркес решил добавить камфору. Смесь нитроцеллюлозы, камфоры и спирта подогревалась до текучего состояния, далее заливалась в форму и застывала при нормальном атмосферном давлении. Так на свет появился паркезин — первый полусинтетический пластик. Увы, как это часто бывает, его первооткрыватель не добился коммерческого успеха.

Зато последователь Паркеса, американец Джон Хайт, заработал на первом пластике целое состояние. Он основал компанию и стал производить расчески, игрушки и массу других изделий из целлулоида. К сожалению, материал оказался высоковоспламеняемым, поэтому сейчас из него делают лишь шарики для настольного тенниса да школьные линейки.

В 1897 году немецкие химики открыли казеин — протеин, образующийся при сворачивании молока под действием протеолитических ферментов (тех самых веществ, с помощью которых мы перевариваем пищу). Ученые обнаружили, что казеин придает материалам эластичные свойства, а при остывании — твердость и прочность. Из казеина наладили выпуск пуговиц и вязальных спиц.

Первый полностью синтетический пластик был разработан Лео Беикеландом в США в 1907 году. Беикеланд искал синтетический заменитель для шеллака — воскообразного вещества, выделяемого тропическими насекомыми. Его в огромных количествах потребляла граммофонная и электротехническая промышленность: из шеллака делали пластинки и изоляторы. Ученый изобрел жидкое вещество, напоминающее смолу, которое после застывания превращалось в материал с удивительными свойствами. Изделия из него были прочными и не растворялись даже в кислоте. Первые телефонные аппараты были сделаны именно из находки Беикеланда. Пластик мгновенно (менее чем за год) распространился по всему миру.

Начало биоэры

Однако пластик, кроме всех своих замечательных свойств, имеет два важных недостатка. Во‑первых, он производится из невосстанавливаемых природных ресурсов — нефти, угля и газа. Во‑вторых, его главное достоинство — долговечность, — за которым так гнались изобретатели пластика в начале прошлого столетия, сегодня обернулось недостатком. Чем больше пластмассы мы используем, тем быстрее растут горы отходов, которые не разлагаются в среде ни при каких условиях. Миллионы тонн пластика скапливаются в природе, загрязняя окружающую среду.

Поэтому ближе к концу прошлого столетия ученые задумались о том, чтобы создать материал, схожий по свойствам с пластиком. При этом требовалось, чтобы заменитель пластика можно было делать из возобновляемых компонентов (например, растений) и чтоб он был по зубам бактериям, то есть мог разлагаться в природных условиях. В середине 1990-х, как грибы после дождя, стали появляться сенсационные сообщения об изобретении биопластика — пластика из натурального крахмала, разлагающегося под воздействием различных микроорганизмов. Но тогда о крупномасштабном внедрении новшества в нашу повседневную жизнь не могло быть и речи: производство биопластика оказалось слишком дорогим удовольствием.

С наступлением нового века ситуация изменилась кардинальным образом. Ученые нашли способ снизить себестоимость изготовления биопластика и утверждают, что в скором времени она приблизится к стоимости изготовления обычной пластмассы. Более того, некоторые эксперты считают, что цена на разлагаемую пластмассу искусственно завышается коммерческими производителями и нефтяными компаниями (нефтяники не жалуют биопластик потому, что его массовое производство может привести к падению цен на нефть). А ведь, если посчитать затраты на переработку пластмассовых отходов и внести эту цифру в стоимость обычного пластика, еще неизвестно, какой из них будет дороже.

Пластиковые плантации

Обычный пластик не поддается разложению в среде из-за того, что он состоит из слишком длинных полимеров, которые тесно связаны друг с другом. Совсем по‑иному ведет себя пластик, содержащий более короткие натуральные полимеры растений.

Биопластик можно делать из крахмала, который является природным полимером и производится растениями в процессе фотосинтеза. В большом количестве крахмал содержится в злаковых, картофеле и других неприхотливых растениях. Урожай крахмала с кукурузы доходит до 80% от всей собранной зеленой массы. Поэтому производство пластика нового поколения должно стать достаточно рентабельным. Биопластик ломается и крошится при любой температуре, в которой активны микроорганизмы. Остаточными продуктами этого процесса являются двуокись углерода и вода.

Из-за того что крахмал хорошо растворяется в воде, изделия из него легко деформируются при малейшем контакте с влагой. Для того чтобы придать крахмалу большую прочность, его обрабатывают специфическими бактериями, разлагающими полимеры крахмала в мономеры молочной кислоты. Затем химическим способом мономеры заставляют соединиться в цепочки полимеров. Эти полимеры гораздо прочнее, но при этом не так длинны, как полимеры пластмассы, и могут разлагаться микроорганизмами. Полученный материал назвали полилактидом (PLA). В прошлом году в штате Небраска открылся первый в мире завод по изготовлению PLA.

Другой способ получения биопластика заключается в использовании бактерий Alcaligenes eutrophus. В процессе своей жизнедеятельности они производят гранулы органического пластика, получившего название «полигидроксиалканонат» (PHA). Уже были проделаны успешные эксперименты по внедрению генов этих бактерий в хромосомы растений, чтобы те смогли в дальнейшем производить пластик внутри своих собственных клеток. Это означает, что пластик можно буквально выращивать. Правда, такой способ пока остается дорогостоящим. К тому же, так как процесс включает в себя вмешательство на генетическом уровне, он имеет и своих противников.

Кукурузные вилки

Биопластики уже сегодня находят широкое практическое применение во многих странах. Полилактид можно использовать для производства одноразовых подгузников и посуды. Он не вреден для человеческого организма, поэтому не так давно его начали применять в медицине в качестве основы для временных имплантатов и хирургических ниток. «Кукурузные» изделия могут быть сделаны с расчетом на срок самораспада, который требует специфика его употребления. Некоторые виды биопластика растворяются очень быстро, другие могут служить месяцы, а то и годы.

Итальянская компания Novamont уже давно приступила к выпуску биопластика под названием MaterBi. В Австрии и Швеции McDonald’s предлагает в своих ресторанах «кукурузные» вилки и ножи, компания Goodyear выпустила первые биошины Biotred GT3, а магазины Carrefour во Франции, Esselunga в Италии и CoOp в Норвегии продают свои товары в биопластиковых пакетах из того же MaterBi.

Австралийские ученые из Исследовательского международного центра продовольственной и упаковочной индустрии тоже рекламируют свою продукцию из кукурузного крахмала. Среди новшеств — горшки для рассады, которые саморазлагаются в почве под воздействием влаги, и черная пленка, замечательные свойства которой порадуют любого огородника.

Уже появились идеи производства не просто одноразовых биоупаковок, а пищевых упаковок, которые содержали бы в себе специфичные бактерии, убивающие патогены — возбудителей различных болезней. Одним из самых опасных патогенов является бактерия под названием «листерия». Она развивается в пищевых продуктах даже при низких температурах и может стать причиной смертельной болезни, сопровождающейся высокой температурой и тошнотой. Ученые из Университета Клемсон изобрели биопластик, который содержит бактерии низина, не позволяющие листерии размножаться. Низин представляет собой антибиотик, который вырабатывается молочнокислыми бактериями Streptococcus lactis. Он безвреден для живого организма и быстро разрушается ферментами человеческого кишечника.

Есть и другие не менее интересные проекты. Фантазии исследователям не занимать. Так что вполне может статься, скоро горы мусора из долговечного пластика уйдут в прошлое, а на их месте будут построены заводы по выпуску «кукурузных» пластмассовых изделий.

Роль и значение пластмассы в современном мире растет стремительными шагами. На сегодняшний день не существует такой сферы деятельности, где бы не использовалась пластмасса. Пластмассовая продукция обладает такими преимуществами, как легкость, экономичность, надежность, качественность, а также, что немаловажно, она является энергосберегающей.

Пластмасса представляет собой искусственный материал, который состоит из цепочек полимеров. Комбинацией таких цепочек обусловливаются особенности материала. К примеру, твердый пластик может прийти на смену металлу в изготовлении автомобилей, а мягкий – идеально подходит для изготовления таких тканей, как искусственная кожа и мех. Изделия, сделанные из пластмассы, как уже было сказано выше, используются во многих сферах промышленности, но не во всех. Однако с каждым годом область применения пластика становится все шире и шире. В настоящее время невозможно представить себе мир без пластмассовой продукции. Но впервые пластмасса появилась относительно не так давно - всего лишь 150 лет тому назад.

Изобретателем пластика является сталелитейщик и изобретатель из Бирмингема Александр Паркс. Он, для производства пластмассы, пускал в ход нитроцеллюлозу – это целлюлоза, пропитанная азотной кислотой, а также спирт и камфору.

Своему изобретению Паркс дал название паркезин. Данный материал появился в 1862 году на Большой Международной выставке, которая проходила в Лондоне.

А в 1866 году Александр Паркс основал фирму «Parkesine Company», которая занималась массовым производством паркезина. Однако, в 1868 году, его компания обанкротилась из-за плохого качества пластика, потому как Паркс старался минимизировать расходы на изготовление пластиковой продукции.

Спустя некоторое время, на смену паркезина пришел ксилонит, который производился компанией Даниэля Спилла, а также целлулоид, изготавливаемый Джоном Весли Хайатом. В 1870 году он зарегистрировал торговую марку «Celluloid».

Несмотря на то, что от ослепительно яркого света целлулоид менял свою цветовую гамму и становился более хрупким, из него делали очень много вещей - начиная от бильярдных шаров и заканчивая фотопленкой.

Пакеты, которыми мы так широко пользуемся в быту, изготавливают их полиэтилена. Изобретателем данного материала является Ганс фон Пехманн. Он впервые получил этот материал в 1899 году. Однако на тот момент его изобретение не получило массового распространения, но вторую жизнь полиэтилен все-таки получил благодаря инженерам Эрику Фосету и Реджинальду Гибсону. Это случилось в 1933 году. С самого начала полиэтилен применяли в создании телефонного кабеля и, только в 1950-е годы, данный материал стали использовать в пищевой промышленности в качестве упаковки.

Один из самых многофункциональных пластиковых материалов является поливинилхлорид. Из такого материала производят одежду, обувь, аксессуары, зубные щетки, стеновые панели и так далее. ПВХ так же, как и полиэтилен, появился случайно. Его создал французский химик и физик Анри Виктор Реньо. В 1835 году Реньо с помощью присоединения ацетилена к хлористому водороду получил такое вещество, как винилхлорид, а в 1838 французский химик синтезировал полимер поливинилиденхлорид, который был получен на его основе.

На сегодняшний день пластмассовые изделия совершили грандиозную революцию. Из пластмасс можно производить не только радиоприемники, часы, коробки, автомобили, радиоприемники, но и дома, обувь и даже гроб.

"Пластик", происходит от греческого слова «Plastikos», обозначает любой гибкий или податливый материал, найденный в природе или полученный синтетически.

В настоящее время, пластмассы распространены настолько, что кажется совершенно невероятным, что когда-то было время, когда пластик отсутствовал в нашей повседневной жизни. Природные пластмассы, такие как смола сосны, Пек, гудрон, Янтарь, воск, сало, копал, гуттаперча, натуральный кератин, использовались в человеческой истории в течение долгого времени.

Развитие различных пластмасс

В 1862 году на выставке в Англии, английский изобретатель Александр Паркс представил материал, получаемый из нитрата целлюлозы, который был назван Parkesine и, как ожидалось, будет использован для множества различных целей, одна из которых как более дешевый вариант резины. Однако, на самом деле, он оказался слишком дорогим и неудобным для коммерческого производства и не прижился. Примерно в то же время, Джеймс Хайятт Олбани из Нью-Йорка, стремясь выиграть конкурс по поиску альтернативы слоновой кости (используется, чтобы сделать бильярдные шары), разработал первый коммерчески жизнеспособный вид пластиковой целлюлозы путем смешивания Камфоры с Коллодия. Он назвал этот материал «Целлулоид » и, несмотря на серьезные недостатки из-за его огнеопасного характера, это был успех, революция, в частности в фото-и киноиндустрии.

В 1894 году два английских ученых, Кросс и Бивен, получили патенты для «ацетата целлюлозы» , который был похож по характеру на Целлулоид, но безопаснее. При растворении в ацетоне, он мог быть использован для создания водонепроницаемой ткани, которой покрывали деревянные рамы первых самолетов и поэтому пользовался огромным спросом в годы Первой Мировой Войны. Искусственные шелковые ткани, посуда, прозрачные листы, а также другие практические изделия также начали делать из ацетата целлюлозы. Однако, качество этих объектов, оставляло желать лучшего.

В 1907 году Бакелит Лео Хендрик, обнаружил что жидкая смола при закаливании обладает свойством сохранять свою форму навсегда. Это была первая термореактивная пластмасса и она оказалась настолько незаменимой, что используется до сих пор. Дальше пошли нейлон , который был впервые произведен в знаменитой лаборатории компании DuPont. Еще одним важным шагом стала разработка поливинилхлорида (ПВХ) или винила химиком-органиком Б. Ф. Гудричем, Уолдо Сэмоном. Saran , пластик, из которого изготавливаются упаковки пищевых продуктов, был обнаружен Ральфом Уили в 1933 году, и химик Рой Планкет обнаружил тефлон в 1938 году . Сегодня тефлон широко используется в кухонных принадлежностях. Жесткие и прозрачные полиметилметакрилаты или акрил, известный как Плексиглас начал серийно выпускаться еще в 1932 году для навесов. Два исследователя Кузнецов и Гибсон, наткнулись на полиэтилен в 1933 году во время испытаний воздействия высокого давления. Политен начал широко использоваться только во время Второй Мировой Войны и использовался как облегченная изоляция для радара. Позже его стали применять для таких предметов, как бутылки, контейнеры и мешки, и сегодня это наиболее часто используемый тип пластмассы в мире. После войны, в 1949 году инженер по имени Джеймс Райт изобрел пластиковую замазку, которая могла растягиваться и при этом не разрушаться. Сегодня она известна под названием «пластилин» , он стал очень популярен как детский элемент игры.

С тех пор пластмассовая промышленность прошла долгий путь. Сегодня, пластмасса помимо всего перечисленного выше, используется в упаковке, текстиле, игрушках, кредитных картах, телевизорах, автомобилях, компьютерах и периферии; пластмасса регулярно и успешно используется врачами, чтобы заменить части тела человека, позволяя людям жить более продуктивной и долгой жизнью; детали из пластмассы на заказ сегодня можно заказать практически везде. Они спроектированы, чтобы снизить экологические и финансовые затраты крупномасштабной добычи нефти и нефтехимии на полимерных заводах. Ученые создали первые электропроводящие пластмассы, хотя прежде чем они могут быть практически применены, необходимы дополнительные исследования. В 2000 году Нобелевская премия по химии была присуждена исследователям, которые изначально показали, что пластмассы могут проводить электричество.