Типы рнк характеристика и функции. Что такое ДНК и РНК? Структура ДНК

В эукариотических клетках существуют также малые ядерные РНК (мяРНК), являющиеся участниками процессинга РНК, и гетерогенные ядерные РНК (гяРНК), представляющие собой предшественников мРНК. Кроме того, обнаружена так называемая антисмысловая РНК, участвующая в регуляции процесса репликации ДНК.

В процессе транскрипции нуклеотидная последовательность локуса (место в хромосоме, где находится ген) в ДНК копируется в молекулу РНК. Транскрибируются три вида генов. Транскрипты генов рРНК используются в синтезе рибосом, нуклеотидная последовательность мРНК переписывается в последовательность аминокислот при синтезе полипептида на рибосоме, а транскрипты генов тРНК связываются с аминокислотами, которые затем переносятся в рибосомный синтезирующий центр в последовательности, зашифрованной в мРНК; этот процесс называется трансляцией.

Рибосомная РНК. Она входит в состав клеточных органелл --

рибосом. Биохимическая функция рРНК пока до конца не изучена. Предполагается, что она выполняет роль молекулярного каркаса, на котором крепятся участники процесса трансляции; рРНК имеет большую молекулярную массу (до 2 10), характеризуется метаболической стабильностью. На ее долю приходится до 85--90 % всех клеточных РНК. Степень спирализованности молекул рРНК находится в пределах 70--80 %.

Предполагается, что в белоксинтезирующей системе клетки

функция рРНК не исчерпывается ролью структурного компонента. У прокариотов обнаружено, что в рРНК имеются небольшие участки, комплементарные участкам мРНК. Спаривание этих участков, видимо, способствует первоначальному связыванию мРНК с рибосомой. Не исключено, что некоторые участки рРНК играют определенную роль в формировании пептидтрансферазного центра рибосомы, ответственного за образование пептидных связей при синтезе белка.

Транспортные РНК. Это низкомолекулярные нуклеиновые кислоты; молекулярная масса колеблется в пределах 23 000--30 000, каждой из 20 белковых аминокислот соответствует, по крайней мере, одна тРНК. Однако некоторым аминокислотам специфичны от 2 до 6 тРНК; предполагается их общее количество около 60. Они составляют примерно 15 % общего количества клеточных РНК. Многие тРНК получены в гомогенном состоянии, некоторые -- в кристаллическом виде.

Небольшая молекулярная масса, наличие достаточно большого количества (до 10 %) минорных оснований, которые являются прекрасными маркерами, существенно облегчают проблему определения нуклеотидной последовательности тРНК. В 1965 г. Р. Холли и его сотрудники установили полную нуклеотидную последовательность аланиновой тРНК дрожжей; в 1967 г. А.А. Баев и сотрудники установили последовательность нуклеотидов валиновой тРНК дрожжей. А. Рич и др. (1975--1977 гг.) провели полную расшифровку пространственной структуры фенилаланиновой тРНК на основе рентгенограмм с разрешением до 0,4 нм. Вторичная структура тРНК в плоском изображении имеет вид клеверного листа (рис. 3). тРНК содержит 4 двухцепочечных спиральных участка, 3 из которых являются "шпильками", несущими петли из неспаренных нуклеотидов; 3"- и 5"-концы полинуклеотидной цепи объединены в наиболее длинный спиральный участок, образованный водородными связями между азотистыми основаниями и завершающийся неспаренным тринуклеотидом ССА, Кроме четырех основных ветвей, более длинные тРНК содержат короткую пятую, или дополнительную, ветвь. Две из основных ветвей непосредственно обеспечивают функцию тРНК как адалтора (между двадцатибуквенным кодом белков и четырехбуквенным кодом нуклеиновых кислот). Антикодоновая ветвь имеет антикодон, представляющий собой специфический триплет нуклеотидов, комплементарный кодону мРНК и способный образовывать с ним пары оснований. Акцепторная ветвь присоединяет специфическую аминокислоту за счет образования эфирной связи между ее карбоксильной группой и гидроксильной группой 3"-концевого остатка аденина в тРНК, Две другие главные ветви тРНК называются дигидроуридиловая ветвь и ТС-ветвъ. Первая содержит необычный нуклеозид дигидроуридин, а вторая -- нуклеозиды псевдоуридин () и риботимидин (Т), обычно не присутствующие в составе РНК.

Исследования структуры тРНК методом рентгеноструктурного анализа показали, что их нативные молекулы имеют компактную форму; отдельные двухспиральные "шпильки" клеверного листа складываются в специфическую третичную структуру, которая является близкой для всех тРНК.

После ферментативной этерификации свободной 3"-гидроксигруппы концевого остатка адениловой кислоты в последовательности ССА специфической в отношении тРНК аминокислотой образуется активная форма, называемая аминоацил-тРНК. Остаток этой аминокислоты переносится к концу растущей полипептидной цепи. Антикодон обеспечивает специфичность взаимодействия тРНК с мРНК. Боковые петли, видимо, играют важную роль в связывании тРНК с аминоацил-тРНК-синтетазой и с комплексом рибосома--мРНК. Аддукты аминоцил--тРНК располагаются в определенной последовательности, связанной с последовательностью кодонов мРНК.

Рис.5

Матричная РНК составляет незначительную часть (3--10 %) всех клеточных РНК; молекулярная масса колеблется в широких пределах и доходит до 14 10. Она программирует синтез всех клеточных белков цитоплазмы. Относительное содержание индивидуальной мРНК в суммарном препарате РНК может составлять тысячные доли процента. Первые экспериментальные доказательства существования мРНК получили А.Н. Белозерский, А.С. Спирин и их сотрудники (1957--1960 гг.). Они показали, что нуклеотидный состав общей РНК бактерий E. coli коррелирует с составом их ДНК, и пришли к заключению о наличии, по крайней мере, двух типов РНК, один из которых (большая фракция) имеет состав, не отражающий состава ДНК, а второй (меньшая фракция) воспроизводит состав ДНК. В дальнейшем выяснилось, что первая фракция -- это рибосомная РНК, а вторая -- мРНК. Но это сделали в 1961 г. Ф. Гросс и сотрудники.

Если рРНК и тРНК метаболически устойчивы, то мРНК в большинстве случаев, особенно у прокариот, является относительно короткоживущей. Ее нуклеотидный состав близок к составу ДНК, выделенной из того же организма. мРНК имеют отчетливо выраженную вторичную структуру; в состав двухцепочечных участков включено до 75 % всех нуклеотидных последовательностей мРНК. Значительная часть участков вторичной структуры в мРНК идентифицирована "шпильками". Однако роль участков вторичной структуры в реализации матричных функций пока точно не установлена. Предполагается, что "шпильки" выполняют роль специфических структур, обусловливающих узнавание определенных участков рибосом при их связывании с мРНК.

Если рРНК и тРНК относятся к обслуживающему аппарату белоксинтезирующей системы клетки, то мРНК является прямым посредником между ДНК и белками, играет роль матрицы для синтеза последних, поэтому считают, что она выполняет роль мессенджера. Сама мРНК синтезируется в ядре клетки в процессе транскрипции у в ходе которой нуклеотидная последовательность одной из цепей хромосомной ДНК ферментативным путем "переписывается" (транскрибируется) с образованием предшественника пре-мРНК; последняя имеет копии палиндромов ДНК, поэтому ее вторичная структура содержит шпильки и линейные участки. При созревании пре-мРНК шпильки отсекаются ферментами и образуется мРНК.

Основу жизни образуют белки. Функции их в клетке очень разнообразны. Однако белки «не умеют» размножаться. А вся информация о строении белков содержится в генах (ДНК).

У высших организмов белки синтезируются в цитоплазме клетки, а ДНК сокрыта за оболочкой ядра. Поэтому ДНК непосредственно не может быть матрицей для синтеза белка. Эту роль выполняет другая нуклеиновая кислота – РНК.

Молекула РНК представляет собой неразветвленный полинуклеотид, обладающий третичной структурой . Она образована одной полинуклеотидной цепочкой, и, хотя входящие в ее состав комплементарные нуклеотиды также способны образовывать между собой водородные связи, эти связи возникают между нуклеотидами одной цепочки. Цепи РНК значительно короче цепей ДНК. Если содержание ДНК в клетке относительно постоянно, то содержание РНК сильно колеблется. Наибольшее количество РНК в клетках наблюдается во время синтеза белка.

РНК принадлежит главная роль в передаче и реализации наследственной информации . В соответствии с функцией и структурными особенностями различают несколько классов клеточных РНК.

Существует три основных класса клеточных РНК.

  1. Информационная (иРНК), или матричная (мРНК) . Ее молекулы наиболее разнообразны по размерам, молекулярной массе (от 0,05х106 до 4х106) и стабильности. Составляют около 2% от общего количества РНК в клетке. Все иРНК являются переносчиками генетической информации из ядра в цитоплазму, к месту синтеза белка. Они служат матрицей (рабочим чертежом) для синтеза молекулы белка, так как определяют аминокислотную последовательность (первичную структуру) белковой молекулы.
  1. Рибосомальные РНК (рРНК) . Составляют 80–85% от общего содержания РНК в клетке. Рибосомальная РНК состоит из 3–5 тыс. нуклеотидов. Она синтезируется в ядрышках ядра. В комплексе с рибосомными белками рРНК образует рибосомы – органоиды, на которых происходит сборка белковых молекул. Основное значение рРНК состоит в том, что она обеспечивает первоначальное связывание иРНК и рибосомы и формирует активный центр рибосомы, в котором происходит образование пептидных связей между аминокислотами в процессе синтеза полипептидной цепи.
  2. Транспортные РНК (тРНК) . Молекулы тРНК содержат обычно 75-86 нуклеотидов. Молекулярная масса молекул тРНК около 25 тыс. Молекулы тРНК играют роль посредников в биосинтезе белка – они доставляют аминокислоты к месту синтеза белка, то есть на рибосомы. В клетке содержится более 30 видов тРНК. Каждый вид тРНК имеет характерную только для него последовательность нуклеотидов. Однако у всех молекул имеется несколько внутримолекулярных комплементарных участков, благодаря наличию которых все тРНК имеют третичную структуру, напоминающую по форме клеверный лист.

Вторичная структура РНК – характерна для тРНК, одноцепочечная, по форме напоминает «клеверный лист». Включает:

  • сравнительно короткие двойные спирали – стебли,
  • однотяжевые участки – петли.

Имеется 4 стебля (акцепторный, антикодоновый, дигидроуридиловый, псевдоуридиловый) и 3 петли.

«Псевдоузел» - элемент вторичной структуры РНК, схематично

Акцепторный стебель – содержит 3’- и 5’- концы полинуклеотидной цепи, 5’-конец заканчивается остатком гуаниловой кислоты, 3’-конец – триплетом ЦЦА и служит для образования сложноэфирной связи с АК.

Антикодоновый стебель узнает свой кодон на и-РНК в рибосомах по принципу комплементарности.

Псевдоуридиловый стебель служит для прикрепления к рибосоме.

Дигидроуридиловый стебель служит для связи с аминоацил-тРНК-синтетазой.

По химическому строению РНК (рибонуклеиновая кислота) является нуклеиновой кислотой, во многом схожей с ДНК . Важными отличиями от ДНК является то, что РНК состоит из одной цепи, сама цепь более короткая, вместо тимина в РНК присутствует урацил, вместо дезоксирибозы - рибоза.

По строению РНК является биополимером, мономерами которого являются нуклеотиды. Каждый нуклеотид состоит из остатка фосфорной кислоты, рибозы и азотистого основания.

Обычными для РНК азотистыми основаниями являются аденин, гуанин, урацил и цитозин. Аденин и гуанин относятся к пуринам, а урацил и цитозин - к пиримидинам. Пуриновые основания состоят из двух колец, а пиримидиновые из одного. Кроме перечисленных азотистых оснований в РНК встречаются и другие (в основном различные модификации перечисленных), в том числе и характерный для ДНК тимин.

Рибоза - это пентоза (углевод, включающий пять атомов углерода). В отличие от дезоксирибозы имеет дополнительную гидроксильную группу, что делает РНК более активной в химических реакциях по сравнению с ДНК. Также как и во всех нуклеиновых кислотах пентоза в РНК имеет циклическую форму.

Нуклеотиды соединены в полинуклеотидную цепь ковалентными связями между остатками фосфорной кислоты и рибозой. Один остаток фосфорной кислоты связан с пятым атомом углерода рибозы, а другой (от соседнего нуклеотида) связан с третьим атомом углерода рибозы. Азотистые основания связаны с первым атом углерода рибозы и располагаются перпендикулярно фосфатно-пентозному остову.

Ковалентно связанные нуклеотиды формируют первичную структуру молекулы РНК. Однако по своему вторичному и третичному строению РНК бывают весьма различными, что связано со множеством выполняемых ими функций и существованием различных типов РНК .

Вторичная структура РНК формируется за счет водородных связей возникающих между азотистыми основаниями. Однако, в отличие от ДНК, у РНК эти связи возникают не между разными (двумя) цепями полинуклеотида, а за счет различных способов складывания (петли, узлы и др.) одной цепи. Таким образом, вторичная структура молекул РНК бывает куда разнообразнее, чем у ДНК (где это почти всегда двойная спираль).

Строение многих молекул РНК также подразумевает третичную структуру, когда сворачиваются уже спаренные за счет водородных связей участки молекулы. Например, молекула транспортной РНК на уровне вторичной структуры сворачивается в форму, напоминающую клеверный лист. А на уровне третичной структуры сворачивается так, что становится похожа на букву Г.

Рибосомальная РНК образует комплексы с белками (рибонуклеопротеиды).

Время, в которое мы живем, отмечено потрясающими переменами, огромным прогрессом, когда люди получают ответы на все новые и новые вопросы. Жизнь стремительно движется вперед, и то, что еще совсем недавно казалось невозможным, начинает претворяться в жизнь. Вполне возможно, что представляется сегодня сюжетом из жанра фантастики, скоро тоже приобретет черты реальности.

Одним из важнейших открытий во второй половине двадцатого столетия стали нуклеиновые кислоты РНК и ДНК, благодаря которым человек приблизился к разгадкам тайн природы.

Нуклеиновые кислоты

Нуклеиновые кислоты - это органические соединения, обладающие высокомолекулярными свойствами. В их состав входят водород, углерод, азот и фосфор.

Они были открыты в 1869 году Ф. Мишером, который исследовал гной. Однако тогда его открытию не придали особого значения. Лишь позже, когда эти кислоты обнаружили во всех животных и растительных клетках, пришло понимание огромной их роли.

Существуют два вида нуклеиновых кислот: РНК и ДНК (рибонуклеиновые и дезоксирибонуклеиновые кислоты). Настоящая статья посвящена рибонуклеиновой кислоте, но для общего понимания рассмотрим также, что собой представляет ДНК.

Что такое

ДНК — это состоящая из двух нитей, которые соединены по закону комплементарности водородными связями азотистых оснований. Длинные цепи закручены в спираль, один виток содержит почти десять нуклеотидов. Диаметр двойной спирали составляет два миллиметра, расстояние между нуклеотидами - около половины нанометра. Длина одной молекулы порой достигает нескольких сантиметров. Длина ДНК ядра человеческой клетки составляет почти два метра.

В структуре ДНК содержится вся ДНК обладает репликацией, что означает процесс, в ходе которого из одной молекулы образуются две совершенно одинаковые - дочерние.

Как уже было отмечено, цепь складывается из нуклеотидов, состоящих, в свою очередь, из азотистых оснований (аденина, гуанина, тимина и цитозина) и остатка кислоты фосфора. Все нуклеотиды различаются азотистыми основаниями. Водородная связь возникает не между всеми основаниями, аденин, к примеру, может соединяться только с тимином или гуанином. Таким образом, адениловых нуклеотидов в организме столько же, сколько тимидиловых, а число гуаниловых равно цитидиловым (правило Чаргаффа). Получается, что последовательность одной цепочки предопределяет последовательность другой, и цепи как бы зеркально отражают друг друга. Такая закономерность, где нуклеотиды двух цепей располагаются упорядоченно, а также соединяются избирательно, называется принципом комплементарности. Кроме водородных соединений, двойная спираль взаимодействует и гидрофобно.

Две цепи разнонаправлены, то есть расположены в противоположных направлениях. Поэтому напротив трех"-конца одной находится пяти"-конец другой цепи.

Внешне напоминает винтовую лестницу, перилом которой является сахарофосфатный остов, а ступеньками — комплементарные основания азота.

Что такое рибонуклеиновая кислота?

РНК — это нуклеиновая кислота с мономерами, называющимися рибонуклеотидами.

По химическим свойствам она очень похожа на ДНК, так как обе являются полимерами нуклеотидов, представляющих собой фосфолированный N-гликозид, который выстроен на остатке пентозы (пятиуглеродного сахара), с фосфатной группой пятого углеродного атома и основания азота при первом углеродном атоме.

Она представляет собой одну полинуклеотидную цепочку (кроме вирусов), которая намного короче, чем у ДНК.

Один мономер РНК — это остатки следующих веществ:

  • основания азота;
  • пятиуглеродного моносахарида;
  • кислоты фосфора.

РНК имеют пиримидиновые (урацил и цитозин) и пуриновые (аденин, гуанин) основания. Рибоза является моносахаридом нуклеотида РНК.

Отличия РНК и ДНК

Нуклеиновые кислоты отличаются друг от друга следующими свойствами:

  • количество ее в клетке зависит от физиологического состояния, возраста и органной принадлежности;
  • ДНК содержит углевод дезоксирибозу, а РНК — рибозу;
  • азотистое основание у ДНК — тимин, а у РНК — урацил;
  • классы выполняют различные функции, но синтезируются на матрице ДНК;
  • ДНК состоит из двойной спирали, а РНК — из одинарной цепи;
  • для нее нехарактерны действующие у ДНК;
  • в РНК больше минорных оснований;
  • цепи существенно отличаются по длине.

История изучения

Клетка РНК впервые была открыта биохимиком из Германии Р. Альтманом при исследовании дрожжевых клеток. В середине двадцатого века была доказана роль ДНК в генетике. Лишь тогда описали и типы РНК, функции и так далее. До 80-90% массы в клетке приходится на р-РНК, образующих совместно с белками рибосому и участвующих в биосинтезе белка.

В шестидесятых годах прошлого столетия впервые предположили, что должен существовать некий вид, который несет в себе генетическую информацию для синтеза белка. После этого научно установили, что есть такие информационные рибонуклеиновые кислоты, представляющие комплементарные копии генов. Их еще называют матричными РНК.

В декодировании записанной в них информации участвуют так называемые транспортные кислоты.

Позже стали разрабатываться способы выявления последовательности нуклеотидов и устанавливаться структура РНК в пространстве кислоты. Так было обнаружено, что некоторые из них, которые назвали рибозимами, могут расщеплять полирибонуклеотидные цепи. Вследствие этого стали предполагать, что в то время, когда зарождалась жизнь на планете, РНК действовала и без ДНК и белков. При этом все превращения производились с ее участием.

Строение молекулы рибонуклеиновой кислоты

Почти все РНК - это одиночные цепи полинуклеотидов, которые, в свою очередь, состоят из монорибонуклеотидов — пуриновых и пиримидиновых оснований.

Нуклеотиды обозначают начальными буквами оснований:

  • аденина (А), А;
  • гуанина (G), Г;
  • цитозина (С), Ц;
  • урацила (U), У.

Они связаны между собой трех- и пятифосфодиэфирными связями.

Самое разное количество нуклеотидов (от нескольких десятков до десятков тысяч) входит в строение РНК. Они могут формировать вторичную структуру, состоящую в основном из коротких двуцепочных тяжей, которые образовались комплементарными основаниями.

Структура молекулы рибнуклеиновой кислоты

Как уже было сказано, у молекулы имеется однонитевое строение. РНК получает вторичную структуру и форму в результате взаимодействия нуклеотидов между собой. Это полимер, мономером которого является нуклеотид, состоящий из сахара, остатка кислоты фосфора и основания азота. Внешне молекула похожа на одну из цепей ДНК. Нуклеотиды аденин и гуанин, входящие в состав РНК, относятся к пуриновым. Цитозин и урацил являются пиримидиновыми основаниями.

Процесс синтеза

Чтобы молекула РНК синтезировалась, матрицей является молекула ДНК. Бывает, правда, и обратный процесс, когда новые молекулы дезоксирибонуклеиновой кислоты образуются на матрице рибонуклеиновой. Такое встречается при репликации некоторых видов вирусов.

Основой для биосинтеза могут служить также другие молекулы рибонуклеиновой кислоты. В ее транскрипции, которая происходит в ядре клетки, участвуют много ферментов, но самым значимым из них является РНК-полимераза.

Виды

В зависимости от вида РНК, функции ее также отличаются. Существуют несколько видов:

  • информационная и-РНК;
  • рибосомальная р-РНК;
  • транспортная т-РНК;
  • минорная;
  • рибозимы;
  • вирусные.

Информационная рибонуклеиновая кислота

Такие молекулы еще называют матричными. Они составляют в клетке примерно два процента от всего количества. В клетках эукариот они синтезируются в ядрах на ДНК-матрицах, переходя затем в цитоплазму и связываясь с рибосомами. Далее, они становятся матрицами для синтеза белка: к ним присоединяются транспортные РНК, которые несут аминокислоты. Так происходит процесс преобразования информации, которая реализуется в уникальной структуре белка. В некоторых вирусных РНК она к тому же является хромосомой.

Жакоб и Мано являются открывателями этого вида. Не имея жесткой структуры, ее цепь образует изогнутые петли. Не работая, и-РНК собирается в складки и сворачивается в клубок, а в рабочем состоянии разворачивается.

и-РНК несет в себе информацию о последовательности аминокислот в белке, который синтезируется. Каждая аминокислота закодирована в определенном месте при помощи генетических кодов, которым свойственны:

  • триплетность — из четырех мононуклеотидов возможно выстроить шестьдесят четыре кодона (генетического кода);
  • неперекрещиваемость — информация движется в одном направлении;
  • непрерывность — принцип работы сводится к тому, что одна и-РНК — один белок;
  • универсальность — тот или иной вид аминокислоты кодируется у всех живых организмов одинаково;
  • вырожденность — известными являются двадцать аминокислот, а кодонов — шестьдесят один, то есть они кодируются несколькими генетическими кодами.

Рибосомальная рибонуклеиновая кислота

Такие молекулы составляют подавляющее большинство клеточных РНК, а именно от восьмидесяти до девяноста процентов от общего количества. Они соединяются с белками и формируют рибосомы — это органоиды, выполняющие синтез белков.

Рибосомы состоят на шестьдесят пять процентов из р-РНК и на тридцать пять процентов из белка. Эта полинуклеотидная цепь без труда изгибается вместе с белком.

Рибосома состоит из аминокислотного и пептидного участков. Они расположены на контактирующих поверхностях.

Рибосомы свободно передвигаются нужных местах. Они не очень специфичны и могут не только считывать информацию с и-РНК, но и образовывать с ними матрицу.

Транспортная рибонуклеиновая кислота

т-РНК наиболее изучены. Они составляют десять процентов клеточной рибонуклеиновой кислоты. Эти виды РНК связываются с аминокислотами благодаря специальному ферменту и доставляются на рибосомы. При этом аминокислоты переносятся транспортными молекулами. Однако бывает, что аминокислоту кодируют разные кодоны. Тогда переносить их будут несколько транспортных РНК.

Она сворачивается в клубочек, когда неактивна, а функционируя, имеет вид клеверного листа.

В ней различаются следующие участки:

  • акцепторный стебель, имеющий последовательность нуклеотидов АЦЦ;
  • участок, служащий для присоединения к рибосоме;
  • антикодон, кодирующий аминокислоту, которая присоединена к этой т-РНК.

Минорный вид рибонуклеиновой кислоты

Недавно виды РНК пополнились новым классом, так называемыми малыми РНК. Они, скорее всего, являются универсальными регуляторами, которые включают или выключают гены в эмбриональном развитии, а также контролируют процессы внутри клеток.

Рибозимы также недавно выявлены, они активно принимают участие, когда кислота РНК ферментируется, являясь при этом катализатором.

Вирусные виды кислот

Вирус способен содержать либо рибонуклеиновую кислоту, либо дезоксирибонуклеиновую. Поэтому с соответствующими молекулами они называются РНК-содержащими. При попадании в клетку такого вируса происходит обратная транскрипция — на базе рибонуклеиновой кислоты появляются новые ДНК, которые встраиваются в клетки, обеспечивая существование и размножение вируса. В другом случае происходит образование комплиментарной на поступившей РНК. Вирусы белков, жизнедеятельность и размножение идет без ДНК, а лишь на основе информации, содержащейся в РНК вируса.

Репликация

В целях улучшения общего понимания необходимо рассмотреть процесс репликации, в результате которого появляются две идентичные молекулы нуклеиновой кислоты. Так начинается деление клетки.

В ней участвуют ДНК-полимеразы, ДНК-зависимые, РНК-полимеразы и ДНК-лигазы.

Процесс репликации состоит из следующих этапов:

  • деспирализация — происходит последовательное раскручивание материнской ДНК, захватывающей всю молекулу;
  • разрыв водородных связей, при котором цепи расходятся, и появляется репликативная вилка;
  • подстройка дНТФ к освободившимся основаниям материнских цепей;
  • отщепление пирофосфатов от дНТФ молекул и образование фосфорнодиэфирных связей за счет выделяющейся энергии;
  • респирализация.

После образования дочерней молекулы делится ядро, цитоплазма и остальное. Таким образом, образуются две дочерние клетки, полностью получившие всю генетическую информацию.

Кроме этого, кодируется первичная структура белков, которые в клетке синтезируются. ДНК в этом процессе принимает косвенное участие, а не прямое, заключающееся в том, что именно на ДНК происходит синтез, участвующих в образовании белков, РНК. Этот процесс получил название транскрипции.

Транскрипция

Синтез всех молекул происходит во время транскрипции, то есть переписывании генетической информации с определенного оперона ДНК. Процесс в некоторых моментах похож на репликацию, а в других существенно отличается от нее.

Сходствами являются следующие части:

  • начало идет с деспирализации ДНК;
  • происходит разрыв водородных связей между основаниями цепей;
  • к ним комплементарно подстраиваются НТФ;
  • происходит образование водородных связей.

Отличия от репликации:

  • при транскрипции расплетается лишь участок ДНК, соответствующий транскриптону, в то время как при репликации расплетению подвергается вся молекула;
  • при транскрипции подстраивающиеся НТФ содержат рибозу, и вместо тимина урацил;
  • информация списывается лишь с определенного участка;
  • после образования молекулы водородные связи и синтезированная цепь разрываются, а цепь соскальзывает с ДНК.

Для нормального функционирования первичная структура РНК должна состоять только из списанных с экзонов ДНК-участков.

У только что образованных РНК начинается процесс созревания. Молчащие участки вырезаются, а информативные сшиваются, образуя полинуклеотидную цепь. Далее, каждый вид имеет присущие только ему превращения.

В и-РНК происходит присоединение к начальному концу. К конечному участку присоединяется полиаденилат.

В т-РНК модифицируются основания, образуя минорные виды.

У р-РНК также метилируются отдельные основания.

Защищают от разрушения и улучшают транспортировку в цитоплазму белки. РНК в зрелом состоянии с ними соединяются.

Значение дезоксирибонуклеиновых и рибонуклеиновых кислот

Нуклеиновые кислоты имеют огромное значение в жизнедеятельности организмов. В них хранится, переносится в цитоплазму и передается по наследству дочерним клеткам информация о белках, синтезирующихся в каждой клетке. Они присутствуют во всех живых организмах, стабильность этих кислот играет важнейшую роль для нормального функционирования как клеток, так и всего организма. Любые изменения в их строении приведут к клеточным изменениям.

три основных вида РНК: информационная (иРНК), или матричная (мРНК), рибосомная (рРНК), и транспортная (тРНК). Они различаются по величине молекул и функциям. Все типы РНК синтезируются на ДНК при участии ферментов - РНК-полимераз. Информационная РНК состав-ляет 2-3 % всей клеточной РНК, рибосомная - 80-85, транс-портная - около 15 %.

иРНК . она считывает наследст-венную информацию с участка ДНК и в форме скопиро-ванной последовательности азотистых оснований переносит ее в рибосомы, где происходит синтез определенного белка. Каждая из молекул иРНК по порядку расположения нуклеотидов и по размеру соответствует гену в ДНК, с которого она была транс-крибирована. В среднем иРНК содержит 1500 нуклеотидов (75- 3000). Каждый триплет (три нуклеотида) на иРНК называется кодоном. От кодона зависит, какая аминокислота встанет в дан-ном месте при синтезе белка.

(тРНК) обладает относительно невысокой молекулярной массой порядка 24-29 тыс. Д и содер-жит в молекуле от 75 до 90 нуклеотидов. До 10 % всех нуклеоти-дов тРНК приходится на долю минорных оснований, что, по-ви-димому, защищает ее от действия гидролитических ферментов.Роль тРНК заключается в том, что они переносят аминокис-лоты к рибосомам и участвуют в процессе синтеза белка. Каждая аминокислота присоединяется к определенной тРНК. Ряд ами-нокислот обладает более одной тРНК. К настоящему времени обнаружено более 60 тРНК, которые отличаются между собой первичной структурой (последовательностью оснований). Вто-ричная структура у всех тРНК представлена в виде клеверного листа с двухцепочным стеблем и тремя одноцепочными). На конце одной из цепей находится акцепторный участок - триплет ЦЦА, к аденину которого присоединяется специфическая аминокислота.

(рРНК) . Они содержат 120-3100 нуклеотидов. Рибосомная РНК накапливается в ядре, в ядрышках. В ядрышки из цитоплазмы транспортируются рибосомные белки, и там происходит спонтанное образование субчастиц рибосом путем объединения белков с соответствующими рРНК. Субчастицы рибосомы вместе или врозь транспортируются через поры ядерной мембраны в цитоплазму.Рибосомы представляют собой органеллы величиной 20- 30 нм. Они построены из двух субчастиц разного размера и формы. На определенных стадиях белкового синтеза в клетке происходит разделение рибосом на субчастицы. Рибосомная РНК служит как бы каркасом рибосом и способствует первоначальному связыванию иРНК с рибосомой в процессе биосинтеза белка.

Генетический код- свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

Свойства: 1) ге-нетический код триплетный (каждая аминокислота кодируется тремя нуклеотидами); 2) неперекрывающийся (соседние триплеты не имеют общих нуклеотидов); 3) вырожденный (за исключением метионина и триптофана все аминокислоты имеют более одного кодона); 4) универсальный (в основном одинаков для всех живых организмов); 5) в кодонах для одной аминокислоты первые два нуклеотида, как правило, одинаковы, а третий варьирует; 6) имеет линейный порядок считывания и характеризуется колине-арностью, т. е. совпадением порядка расположения кодонов в иРНК с порядком расположения аминокислот в синтезирующей-ся полипептидной цепи.

Дата публикования: 2014-12-08; Прочитано: 11305 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Рибонуклеи́новая кислота́ (РНК) - одна из трёх основных макромолекул (две другие - ДНК и белки), которые содержатся в клетках всех живых организмов.

Так же, как ДНК (дезоксирибонуклеиновая кислота), РНК состоит из длинной цепи, в которой каждое звено называется нуклеотидом. Каждый нуклеотид состоит из азотистого основания, сахара рибозы и фосфатной группы. Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.


РНК

Клеточные РНК образуются в ходе процесса, называемого транскрипцией, то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами - РНК-полимеразами. Затем матричные РНК (мРНК) принимают участие в процессе, называемом трансляцией.

Трансляция - это синтез белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.

Для одноцепочечных РНК характерны разнообразные пространственные структуры, в которых часть нуклеотидов одной и той же цепи спарены между собой. Некоторые высокоструктурированные РНК принимают участие в синтезе белка клетки, например, транспортные РНК служат для узнавания кодонов и доставки соответствующих аминокислот к месту синтеза белка, а рибосомные РНК служат структурной и каталитической основой рибосом.

Однако функции РНК в современных клетках не ограничиваются их ролью в трансляции. Так, малые ядерные РНК принимают участие в сплайсинге эукариотических матричных РНК и других процессах.

Помимо того, что молекулы РНК входят в состав некоторых ферментов (например, теломеразы), у отдельных РНК обнаружена собственная ферментативная активность: способность вносить разрывы в другие молекулы РНК или, наоборот, «склеивать» два РНК-фрагмента. Такие РНК называются рибозимами.

Геномы ряда вирусов состоят из РНК, то есть у них она играет роль, которую у высших организмов выполняет ДНК. На основании разнообразия функций РНК в клетке была выдвинута гипотеза, согласно которой РНК - первая молекула, которая была способна к самовоспроизведению в добиологических системах.

Биологическая роль РНК связана с процессом реализации наследственной информации с ДНК при синтезе белка. Информационная РНК является посредником между информацией о структуре белка на ДНК ядра и местом синтеза белковых молекул в цитоплазме на рибосомах. РНК не имеет двойной спирали, она представлена одной полинуклиотидной цепью (за исключением двуцепочечных РНК-содержащих вирусов). Содержание РНК в клетке колеблется в зависимости от вида. Существует три вида РНК: рибосомальная, информационная, транспортная. Все виды синтезируются на молекуле ДНК в ядре путём транскрипции.

Р-РНК — рибосомальная входит в состав рибосом (3000-5000 нуклеотидов) (80% от общей массы РНК клетки). Из неё построен каркас рибосом, участвует в инициации, окончании синтеза и отделения готовых молекул белка от рибосом.

И-РНК — информационная (матричная) несет генетическую информацию, транскрибируемую с ДНК о структуре полипептидной цепи в виде кодонов (триплетов нуклеотидов). Молекула включает от 300 до 3000 нуклеотидов и составляет 3-5%.

Т-РНК — транспортная – обеспечивает транспорт активированных аминокислот к рибосомам (тройной комплекс аминоацил т-РНК синтетаза, аминокислота, АТФ). Имеет вторичную структуру в виде листка клевера, на верхушке которого – антикодон.

Молекула ДНК разделена на участки, содержащие информацию о структуре белка, которые называются генами и неинформативные отрезки спейсеры, которые разделяют гены. Спейсеры бывают различной длины и регулируют транскрипцию соседнего гена. Транскрибируемые спейсеры копируются при транскрипции вместе с геном, и их комплементарные копии появляются на про-и-РНК. Нетранскрибируемые спейсеры — встречаются между генами гистоновых белков ДНК.

Синтез и-РНК идёт с одной нити двуцепочечной молекулы ДНК по принципу комплементарности. и-РНК является копией не всей молекулы ДНК, а только части её — одного гена или группы генов одной функции. Такая группа генов называется оперон. Оперон – единица генетической регуляции. Он включает структурные гены, несущие информацию о структуре белков, регуляторные гены, управляющие работой структурных. К регуляторным генам относят: промотор, оператор, терминатор. Промотор находится в начале каждого оперона. Это посадочная площадка для РНК — полимеразы (специфический носитель нуклеотидов ДНК, которую фермент узнаёт благодаря химическому сродству). Оператор управляет транскрипцией. Терминатор включает стоп-кодоны, заканчивающие синтез и-РНК.

У эукариот структурные гены разделены на экзоны и интроны. Экзоны – участки, несущие информацию, а интроны – не несущие информацию.

При синтезе и-РНК сначала образуются:

1) Первичный транскрипт — длинный предшественник и-РНК с полной информацией с молекулы ДНК (про-и-РНК).

2) Процессинг — укорочение первичного транскрипта путем вырезания неинформативных участков ДНК (интронов).

3) Сплайсинг — сшивание информативных участков и образование зрелой и-РНК.

Транскрипция начинается со стартовой точки молекулы ДНК с участием фермента РНК — полимераза, для эукариот — адениловый нуклеотид. Синтез и-РНК проходит в 4 стадии:

1) Связывание РНК-полимеразы с промотором.

2) Инициация — начало синтеза (первая диэфирная связь между АТФ и ГТФ и вторым нуклеотидом и-РНК.

3) Элонгация- рост цепи и-РНК.

4) Терминация — завершение синтеза и-РНК.

РНК (рибонуклеиновая кислота), так же как и ДНК, относится к нуклеиновым кислотам. Молекулы-полимеры РНК намного меньше, чем у ДНК. Однако в зависимости от типа РНК количество входящих в них нуклеотидов-мономеров различается.

В состав нуклеотида РНК в качестве сахара входит рибоза, в качестве азотистого основания - аденит, гуанин, урацил, цитозин. Урацил по строению и химическим свойствам близок к тимину, который обычен для ДНК. В зрелых молекулах РНК многие азотистые основания модифицированы, поэтому в реальности разновидностей азотистых оснований в составе РНК намного больше.

Рибоза в отличие от дезоксирибозы имеет дополнительную -ОН-группу (гидроксильную). Это обстоятельство позволяет РНК легче вступать в химические реакции.

Главной функцией РНК в клетках живых организмов можно назвать реализацию генетической информации. Именно благодаря разным типам рибонуклеиновой кислоты генетический код считывается (транскрибируется) с ДНК, после чего на его основе синтезируются полипептиды (происходит трансляция). Итак, если ДНК в основном отвечает за хранение и передачу из поколения в поколение генетической информации (основной процесс – репликация), то РНК реализует эту информацию (процессы транскрипции и трансляции). При этом транскрипция происходит на ДНК, так что этот процесс относится к обоим типам нуклеиновых кислот и тогда с этой точки зрения можно сказать, что и ДНК отвечает за реализацию генетической информации.

При более подробном рассмотрении функции РНК намного разнообразнее. Ряд молекул РНК выполняют структурную, каталитическую и другие функции.

Существует так называемая гипотеза РНК-мира, согласно которой вначале в живой природе в качестве носителя генетической информации выступали только молекулы РНК, при этом другие молекулы РНК катализировали различные реакции. Данная гипотеза подтверждена рядом опытов, показывающих возможную эволюцию РНК. На это указывает и то, что ряд вирусов в качестве нуклеиновой кислоты, хранящей генетическую информацию, имеют молекулу РНК.

Согласно гипотезе РНК-мира ДНК появилась позже в процессе естественного отбора как более устойчивая молекула, что важно для хранения генетической информации.

Выделяют три основных типа РНК (кроме них есть и другие): матричная (она же информационная), рибосомальная и транспортная. Обозначаются они соответственно иРНК (или мРНК), рРНК, тРНК.

Информационная РНК (иРНК)

Почти все РНК синтезируются на ДНК в процессе транскрипции. Однако часто транскрипция упоминается как синтез именно информационной РНК (иРНК). Связано это с тем, что последовательность нуклеотидов иРНК в последствии определит последовательность аминокислот синтезируемого в процессе трансляции белка.

Перед транскрипцией нити ДНК расплетаются, и на одной из них с помощью комплекса белков-ферментов синтезируется РНК по принципу комплементарности, так же как это происходит при репликации ДНК. Только напротив аденина ДНК к молекуле РНК присоединяется нуклеотид, содержащий урацил, а не тимин.

На самом деле на ДНК синтезируется не готовая информационная РНК, а ее предшественник - пре-иРНК. Предшественник содержит участки последовательности нуклеотидов, которые не кодируют белок и которые после синтеза пре-иРНК вырезаются при участии малых ядерных и ядрышковых РНК («дополнительные» типы РНК). Эти удаляющиеся участки называются интронами . Остающиеся части иРНК называются экзонами . После удаления интронов экзоны сшиваются между собой. Процесс удаления интронов и сшивания экзонов называется сплайсингом . Усложняющей жизнь особенностью является то, что можно вырезать интроны по-разному, в результате получатся разные готовые иРНК, которые будут служить матрицами для разных белков. Таким образом, вроде бы один ген ДНК может играть роль нескольких генов.

Следует отметить, что у прокариотических организмов сплайсинга не происходит. Обычно их иРНК сразу после синтеза на ДНК готова к трансляции. Бывает, что пока конец молекулы иРНК еще транскрибируется, на ее начале уже сидят рибосомы, синтезирующие белок.

После того как пре-иРНК созревает в информационную РНК и оказывается вне ядра, она становится матрицей для синтеза полипептида. При этом на нее «насаживаются» рибосомы (не сразу, какая-то оказывается первой, другая - второй и т. д.). Каждая синтезирует свою копию белка, т. е. на одной молекуле РНК могут синтезироваться сразу несколько одинаковых белковых молекул (понятно, что каждая будет находиться на своей стадии синтеза).

Рибосома, передвигаясь от начала иРНК к ее концу, считывает по три нуклеотида (хотя вмещает шесть, т.

е. два кодона) и присоединяет соответствующую транспортную РНК (имеющую соответствующий кодону антикодон), к которой присоединена соответствующая аминокислота. После этого с помощью активного центра рибосомы ранее синтезированная часть полипептида, соединенная с предшествующей тРНК, как-бы «пересаживается» (образуется пептидная связь) на аминокислоту, прикрепленную к только что пришедшей тРНК. Таким образом, молекула белка постепенно увеличивается.

Когда молекула информационной РНК становится не нужна, клетка ее разрушает.

Транспортная РНК (тРНК)

Транспортная РНК - это достаточно маленькая (по меркам полимеров) молекула (количество нуклеотидов бывает разным, в среднем около 80-ти), во вторичной структуре имеет форму клеверного листа, в третичной сворачивается в нечто подобное букве Г.

Функция тРНК — присоединение к себе соответствующей своему антикодону аминокислоты. В дальнейшем соединение с рибосомой, находящейся на соответствующем антикодону кодоне иРНК, и «передача» этой аминокислоты. Обобщая, можно сказать, что транспортная РНК переносит (на то она и транспортная) аминокислоты к месту синтеза белка.

Живая природа на Земле использует всего около 20-ти аминокислот для синтеза различных белковых молекул (на самом деле аминокислот куда больше). Но поскольку, согласно генетическому коду, кодонов больше 60-ти, то каждой аминокислоте может соответствовать несколько кодонов (на самом деле какой-то больше, какой-то меньше). Таким образом, разновидностей тРНК больше 20, при этом разные транспортные РНК переносят одинаковые аминокислоты. (Но и тут не так все просто.)

Рибосомная РНК (рРНК)

Рибосомную РНК часто также называют рибосомальной РНК. Это одно и то же.

Рибосомная РНК составляет около 80% всей РНК клетки, так как входит в состав рибосом, коих в клетке бывает достаточно много.

В рибосомах рРНК образует комплексы с белками, выполняет структурную и каталитическую функции.

В состав рибосомы входят несколько разных молекул рРНК, отличающиеся между собой как по длине цепи, вторичной и третичной структуре, выполняемым функциям. Однако их суммарная функция - это реализация процесса трансляции. При этом молекулы рРНК считывают информацию с иРНК и катализируют образование пептидной связи между аминокислотами.

Виды РНК. Строение и функции РНК

Виды РНК

Молекулы РНК в отличие от ДНК являются однонитевыми структурами. Схема построения РНК аналогична ДНК: основу об-разует сахарно-фосфатный остов, к которому присоединяются азотистые основания.

Рис. 5.16. Строение ДНК и РНК

Различия химического строения заключаются в следующем: дезоксирибоза, присут-ствующая в ДНК, заменена на молекулу рибозы, а тимин представлен другим пиримидином - урацилом (рис. 5.16, 5.18).

Молекулы РНК в зависимости от выполняемых функций под-разделяются на три основных вида: информационные, или мат-ричные (мРНК), транспортные (тРНК) и рибосомальные (рРНК).

В ядре клеток эукариот содержится РНК четвертого вида - гетерогенная ядерная РНК (гяРНК), которая является точной копией соответствующей ДНК.

Функции РНК

— мРНК переносят информацию о структуре белка от ДНК к рибосомам, (т.е. являются матрицей для синтеза белка;

тРНК переносят аминокислоты к рибосомам, специфичность такого переноса обеспечи-вается тем, что имеется 20 типов тРНК, соответствующих 20 аминокислотам (рис. 5.17);

рРНК образуют в комплексе с белками рибосому, в которой происходит синтез белка;

гяРНК является точным транскриптом ДНК, которая, подвергаясь специфическим изменениям, превращается (созревает) в зрелую мРНК.

Молекулы РНК значительно меньше молекул ДНК. Самой ко-роткой является тРНК, состоящая из 75 нуклеотидов.

Рис. 5.17. Строение транспортной РНК

Рис. 5.18. Сравнение ДНК и РНК

Современные представления о строении гена. Интрон-экзонная структура у эукариот

Элементарной единицей наследственности является ген . Тер-мин «ген» был предложен в 1909 г. В. Иогансеном для обозначения материальной единицы наследственности, выделенной Г. Менде-лем.

После работ американских генетиков Дж.Бидла и Э.Тейтума геном стали называть участок молекулы ДНК, кодирующий син-тез одного белка.

Согласно современным представлениям, ген рас-сматривается как участок молекулы ДНК, характеризующийся спе-цифической последовательностью нуклеотидов, определяющих аминокислотную последовательность полипептидной цепи како-го-либо белка или нуклеотидную последовательность функциони-рующей молекулы РНК (тРНК, рРНК).

От-носительно короткие кодирующие последовательности оснований (экзоны) чередуются в них с длинными некодирующими последовательно-стями – интронами, которые вырезаются (сплайсинг ) в процессе созревания иРНК (процессинге ) и не участвуют в процессе трансляции (рис. 5.19).

Размеры генов человека могут колебаться от нескольких десят-ков пар нуклеотидов (п.н.) до многих тысяч и даже миллионов п.н. Так, самый маленький из известных генов содержит всего 21 п.н., а один из самых крупных генов имеет размер более 2,6 млн п.н.

Рис. 5.19. Строение ДНК эукариот

После того как заканчивается транскрипция, все виды РНК претерпевают созревание РНК — процессинг .Он представленсплайсингом - это процесс удаления участков молекулы РНК, соответствующих интронным последовательностям ДНК. Зрелая мРНК выходит в цитоплазму и становится матрицей для синтеза белка, т.е. переносит информацию о структуре белка от ДНК к рибосомам (рис. 5.19, 5.20).

Последовательность нуклеотидов в рРНК сходна у всех орга-низмов. Вся рРНК находится в цитоплазме, где она образует слож-ный комплекс с белками, формируя рибосому.

На рибосомах ин-формация, зашифрованная в структуре мРНК, переводится (транс-лируется ) в аминокислотную последовательность, т.е. происходит синтез белка.

Рис. 5.20. Сплайсинг

5.6. Практическое задание

Выполнить самостоятельно задание. Заполнить таблицу 5.1. Сравнить строение, свойства и функции ДНК и РНК

Таблица 5.1.

Сравнение ДНК и РНК

Вопросы теста

1. Молекула РНК содержит азотистые основания:

2. Молекула АТФ содержит:

а) аденин, дизоксирибозу и три остатка фосфорной кислоты

б) аденин, рибозу и три остатка фосфорной кислоты

в) аденозин, рибозу и три остатка фосфорной кислоты

г) аденозин,дезоксирибозу и три остатка фосфорной кислоты.

3. Хра-ни-те-лем на-след-ствен-но-сти в клет-ке яв-ля-ют-ся мо-ле-ку-лы ДНК, так как в них за-ко-ди-ро-ва-на ин-фор-ма-ция о

а) со-ста-ве по-ли-са-ха-ри-дов

б) струк-ту-ре мо-ле-кул ли-пи-дов

в) пер-вич-ной струк-ту-ре мо-ле-кул белка

г) стро-е-нии ами-но-кис-лот

4. В ре-а-ли-за-ции на-след-ствен-ной ин-фор-ма-ции при-ни-ма-ют уча-стие мо-ле-ку-лы нук-ле-и-но-вых кис-лот, обес-пе-чи-вая

а) син-тез уг-ле-во-дов

б) окис-ле-ние бел-ков

в) окис-ле-ние уг-ле-во-дов

г) син-тез бел-ков

5. С по-мо-щью мо-ле-кул иРНК осу-ществ-ля-ет-ся пе-ре-да-ча на-след-ствен-ной ин-фор-ма-ции

а) из ядра к ми-то-хон-дрии

б) из одной клет-ки в дру-гую

в) из ядра к ри-бо-со-ме

г) от ро-ди-те-лей потом-ству

6. Мо-ле-ку-лы ДНК

а) пе-ре-но-сят ин-фор-ма-цию о стро-е-нии белка к ри-бо-со-мам

б) пе-ре-но-сят ин-фор-ма-цию о стро-е-нии белка в ци-то-плаз-му

в) до-став-ля-ют к ри-бо-со-мам ами-но-кис-ло-ты

г) со-дер-жат на-след-ствен-ную ин-фор-ма-цию о пер-вич-ной струк-ту-ре белка

7. Ри-бо-ну-кле-и-но-вые кис-ло-ты в клет-ках участ-ву-ют в

а) хра-не-нии на-след-ствен-ной ин-фор-ма-ции

б) ре-гу-ля-ции об-ме-на жиров

в) об-ра-зо-ва-нии уг-ле-во-дов

г) био-син-те-зе бел-ков

8. Какая нук-ле-и-но-вая кис-ло-та может быть в виде двух-це-по-чеч-ной мо-ле-ку-лы

9. Из мо-ле-ку-лы ДНК и белка со-сто-ит

а) мик-ро-тру-боч-ка

б) плаз-ма-ти-че-ская мем-бра-на

в) яд-рыш-ко

г) хро-мо-со-мА

10. Фор-ми-ро-ва-ние при-зна-ков ор-га-низ-ма за-ви-сит от мо-ле-кул

б) белков

11. Мо-ле-ку-лы ДНК в от-ли-чие от мо-ле-кул белка об-ла-да-ют спо-соб-но-стью

а) об-ра-зо-вы-вать спи-раль

б) об-ра-зо-вы-вать тре-тич-ную струк-ту-ру

в) са-мо-удва-и-вать-ся

г) об-ра-зо-вы-вать чет-вер-тич-ную струк-ту-ру

12. Соб-ствен-ную ДНК имеет

а) ком-плекс Голь-д-жи

б) ли-зо-со-ма

в) эн-до-плаз-ма-ти-че-ская сеть

г) ми-то-хон-дрия

13. На-след-ствен-ная ин-фор-ма-ция о при-зна-ках ор-га-низ-ма со-сре-до-то-че-на в мо-ле-ку-лах

в) бел-ков

г) по-ли-са-ха-ри-дов

14. Мо-ле-ку-лы ДНК пред-став-ля-ют собой ма-те-ри-аль-ную ос-но-ву на-след-ствен-но-сти, так как в них за-ко-ди-ро-ва-на ин-фор-ма-ция о струк-ту-ре мо-ле-кул

а) по-ли-са-ха-ри-дов

б) бел-ков

в) ли-пи-дов

г) ами-но-кис-лот

15. По-ли-нук-лео-тид-ные нити в мо-ле-ку-ле ДНК удер-жи-ва-ют-ся рядом за счет свя-зей между

а) ком-пле-мен-тар-ны-ми азо-ти-сты-ми ос-но-ва-ни-я-ми

б) остат-ка-ми фос-фор-ной кис-ло-ты

в) ами-но-кис-ло-та-ми

г) уг-ле-во-да-ми

16. Из одной мо-ле-ку-лы нук-ле-и-но-вой кис-ло-ты в со-еди-не-нии с бел-ка-ми со-сто-ит

а) хло-ро-пласт

б) хро-мо-со-ма

г) ми-то-хон-дрия

17. Каж-дая ами-но-кис-ло-та в клет-ке ко-ди-ру-ет-ся

а) одним три-пле-том

б) не-сколь-ки-ми три-пле-та-ми

в) одним или не-сколь-ки-ми три-пле-та-ми

г) одним нук-лео-ти-дом

18. Бла-го-да-ря свой-ству мо-ле-ку-лы ДНК вос-про-из-во-дить себе по-доб-ных

а) фор-ми-ру-ет-ся при-спо-соб-лен-ность ор-га-низ-ма к среде оби-та-ния

б) у осо-бей вида воз-ни-ка-ют мо-ди-фи-ка-ции

в) по-яв-ля-ют-ся новые ком-би-на-ции генов

г) про-ис-хо-дит пе-ре-да-ча на-след-ствен-ной ин-фор-ма-ции от ма-те-рин-ской клет-ки к до-чер-ним

19. Опре-де-лен-ной по-сле-до-ва-тель-но-стью трех нук-лео-ти-дов за-шиф-ро-ва-на в клет-ке каж-дая мо-ле-ку-ла

а) ами-но-кис-ло-ты

б) глю-ко-зы

в) крах-ма-ла

г) гли-це-ри-на

20. Где в клет-ке со-дер-жат-ся мо-ле-ку-лы ДНК

а) В ядре, ми-то-хон-дри-ях и пла-сти-дах

б) В ри-бо-со-мах и ком-плек-се Голь-д-жи

в) В ци-то-плаз-ма-ти-че-ской мем-бра-не

г) В ли-зо-со-мах, ри-бо-со-мах, ва-ку-о-лях

В клет-ках рас-те-ний тРНК

а) хра-нит на-след-ствен-ную ин-фор-ма-цию

б) реп-ли-ци-ру-ет-ся на иРНК

в) обес-пе-чи-ва-ет ре-пли-ка-цию ДНК

г) пе-ре-но-сит ами-но-кис-ло-ты на ри-бо-со-мы

22. Молекула РНК содержит азотистые основания:

а) аденин, гуанин, урацил, цитозин

б) цитозин, гуанин, аденин, тимин

в) тимин, урацил, аденин, гуанин

г) аденин, урацил, тимин, цитозин.

23. Мономерами молекул нуклеиновых кислот являются:

а) нуклеозиды

б) нуклеотиды

в) полинуклеотиды

г) азотистые основания.

24. Состав мономеров молекул ДНК и РНК отличается друг от друга содержанием:

а) сахара

б) азотистых оснований

в) сахара и азотистых оснований

г) сахара, азотистых оснований и остатков фосфорных кислот.

25. Клетка содержит ДНК в:

б) ядре и цитоплазме

в) ядре, цитоплазме и митохондриях

г) ядре, митохондриях и хлоропластах.